論文の概要: Decentralized Multi-Agent System with Trust-Aware Communication
- arxiv url: http://arxiv.org/abs/2512.02410v1
- Date: Tue, 02 Dec 2025 04:39:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-03 21:04:45.723535
- Title: Decentralized Multi-Agent System with Trust-Aware Communication
- Title(参考訳): 信頼度を考慮した分散マルチエージェントシステム
- Authors: Yepeng Ding, Ahmed Twabi, Junwei Yu, Lingfeng Zhang, Tohru Kondo, Hiroyuki Sato,
- Abstract要約: エージェントインターネットのための分散マルチエージェントシステム(DMAS)アーキテクチャを提案する。
私たちのDMASは、ブロックチェーンベースのアーキテクチャを基盤とした分散エージェントランタイムを備えています。
我々は,DMASを信頼性の高いマルチエージェントシステム構築のためのスケーラブルで効率的なソリューションとして評価する。
- 参考スコア(独自算出の注目度): 5.408079087907132
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of Large Language Models (LLMs) is rapidly accelerating the development of autonomous multi-agent systems (MAS), paving the way for the Internet of Agents. However, traditional centralized MAS architectures present significant challenges, including single points of failure, vulnerability to censorship, inherent scalability limitations, and critical trust issues. We propose a novel Decentralized Multi-Agent System (DMAS) architecture designed to overcome these fundamental problems by enabling trust-aware, scalable, and censorship-resistant interactions among autonomous agents. Our DMAS features a decentralized agent runtime underpinned by a blockchain-based architecture. We formalize a trust-aware communication protocol that leverages cryptographic primitives and on-chain operations to provide security properties: verifiable interaction cycles, communication integrity, authenticity, non-repudiation, and conditional confidentiality, which we further substantiate through a comprehensive security analysis. Our performance analysis validates the DMAS as a scalable and efficient solution for building trustworthy multi-agent systems.
- Abstract(参考訳): 大規模言語モデル(LLM)の出現は、自律型マルチエージェントシステム(MAS)の開発を急速に加速させ、エージェントのインターネットへの道を開いた。
しかし、従来の集中型MASアーキテクチャは、単一障害点、検閲に対する脆弱性、固有のスケーラビリティ制限、重要な信頼問題など、重大な課題を呈している。
本稿では,自律エージェント間の信頼意識,拡張性,検閲耐性を両立させることにより,これらの根本的な問題を解決するために設計された,分散マルチエージェントシステム(DMAS)アーキテクチャを提案する。
私たちのDMASは、ブロックチェーンベースのアーキテクチャを基盤とした分散エージェントランタイムを備えています。
我々は、暗号化プリミティブとオンチェーン操作を活用してセキュリティ特性を提供する信頼を意識した通信プロトコルを定式化した。
我々は,DMASを信頼性の高いマルチエージェントシステム構築のためのスケーラブルで効率的なソリューションとして評価する。
関連論文リスト
- Exposing Weak Links in Multi-Agent Systems under Adversarial Prompting [5.544819942438653]
本稿では,マルチエージェントシステムのセキュリティ評価を行うフレームワークであるSafeAgentsを提案する。
広く採用されている5つのマルチエージェントアーキテクチャについて検討する。
この結果から,一般的なデザインパターンには重大な脆弱性があることが判明した。
論文 参考訳(メタデータ) (2025-11-14T04:22:49Z) - Using the NANDA Index Architecture in Practice: An Enterprise Perspective [9.707223291705601]
自律型AIエージェントの普及は、従来のWebアーキテクチャから協調的なインテリジェントシステムへのパラダイムシフトを表している。
本稿では,セキュアで信頼性が高く,相互運用可能なAIエージェントエコシステムの基盤要件に対処する包括的なフレームワークを提案する。
論文 参考訳(メタデータ) (2025-08-05T05:27:27Z) - Attention Knows Whom to Trust: Attention-based Trust Management for LLM Multi-Agent Systems [52.57826440085856]
LLM-MAS(Large Language Model-based Multi-Agent Systems)は、複雑なタスクを解く上で強力な能力を示すが、エージェントが信頼性の低いメッセージを受け取ると弱いままである。
LLMエージェントは、信頼性を評価することなく、すべての受信メッセージを平等に扱う。
本稿では,メッセージの信頼度を評価するための軽量な注意ベース手法であるAttention Trust Score (A-Trust)を提案する。
論文 参考訳(メタデータ) (2025-06-03T07:32:57Z) - LLM Agents Should Employ Security Principles [60.03651084139836]
本稿では,大規模言語モデル(LLM)エージェントを大規模に展開する際には,情報セキュリティの確立した設計原則を採用するべきであることを論じる。
AgentSandboxは、エージェントのライフサイクル全体を通して保護を提供するために、これらのセキュリティ原則を組み込んだ概念的なフレームワークである。
論文 参考訳(メタデータ) (2025-05-29T21:39:08Z) - Zero-Trust Foundation Models: A New Paradigm for Secure and Collaborative Artificial Intelligence for Internet of Things [61.43014629640404]
Zero-Trust Foundation Models (ZTFM)は、ゼロトラストセキュリティの原則をIoT(Internet of Things)システムの基盤モデル(FM)のライフサイクルに組み込む。
ZTFMは、分散、異質、潜在的に敵対的なIoT環境にわたって、セキュアでプライバシ保護のAIを可能にする。
論文 参考訳(メタデータ) (2025-05-26T06:44:31Z) - A Novel Zero-Trust Identity Framework for Agentic AI: Decentralized Authentication and Fine-Grained Access Control [7.228060525494563]
本稿では,Agentic AI IAMフレームワークの提案について述べる。
リッチで検証可能なエージェント識別子(ID)に基づく包括的フレームワークを提案する。
また、Zero-Knowledge Proofs(ZKPs)によって、プライバシ保護属性の開示と検証可能なポリシーコンプライアンスを実現する方法について検討する。
論文 参考訳(メタデータ) (2025-05-25T20:21:55Z) - A Weighted Byzantine Fault Tolerance Consensus Driven Trusted Multiple Large Language Models Network [53.37983409425452]
大規模言語モデル(LLM)は幅広いアプリケーションで大きな成功を収めています。
近年,MultiLLMネットワーク(MultiLLMN)などの協調フレームワークが導入されている。
重み付きビザンチンフォールトトレランス(WBFT)ブロックチェーンコンセンサス機構によって駆動される新しいTrusted MultiLLMNフレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-08T10:04:41Z) - Red-Teaming LLM Multi-Agent Systems via Communication Attacks [10.872328358364776]
大規模言語モデルに基づくマルチエージェントシステム(LLM-MAS)は、メッセージベースのコミュニケーションを通じて高度なエージェント協調を可能にすることで、複雑な問題解決能力に革命をもたらした。
エージェント・イン・ザ・ミドル(AiTM, Agent-in-the-Middle)は、エージェント間メッセージのインターセプトと操作によってLLM-MASの基本的な通信機構を利用する新たな攻撃法である。
論文 参考訳(メタデータ) (2025-02-20T18:55:39Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。