論文の概要: An Agentic AI System for Multi-Framework Communication Coding
- arxiv url: http://arxiv.org/abs/2512.08659v1
- Date: Tue, 09 Dec 2025 14:46:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-10 22:28:08.006269
- Title: An Agentic AI System for Multi-Framework Communication Coding
- Title(参考訳): マルチフレーム通信符号化のためのエージェントAIシステム
- Authors: Bohao Yang, Rui Yang, Joshua M. Biro, Haoyuan Wang, Jessica L. Handley, Brianna Richardson, Sophia Bessias, Nicoleta Economou-Zavlanos, Armando D. Bedoya, Monica Agrawal, Michael M. Zavlanos, Anand Chowdhury, Raj M. Ratwani, Kai Sun, Kathryn I. Pollak, Michael J. Pencina, Chuan Hong,
- Abstract要約: 臨床コミュニケーションのための多フレーム構造化エージェントAIシステム(MOSAIC)を開発した。
MOSAICはLangGraphベースのアーキテクチャ上に構築されており、コードブックの選択とワークフロー計画のためのPlan Agentを含む4つのコアエージェントを編成する。
性能を評価するため,訓練された人間のコーダが作成したゴールドスタンダードアノテーションとMOSAIC出力を比較した。
- 参考スコア(独自算出の注目度): 17.846847341760675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clinical communication is central to patient outcomes, yet large-scale human annotation of patient-provider conversation remains labor-intensive, inconsistent, and difficult to scale. Existing approaches based on large language models typically rely on single-task models that lack adaptability, interpretability, and reliability, especially when applied across various communication frameworks and clinical domains. In this study, we developed a Multi-framework Structured Agentic AI system for Clinical Communication (MOSAIC), built on a LangGraph-based architecture that orchestrates four core agents, including a Plan Agent for codebook selection and workflow planning, an Update Agent for maintaining up-to-date retrieval databases, a set of Annotation Agents that applies codebook-guided retrieval-augmented generation (RAG) with dynamic few-shot prompting, and a Verification Agent that provides consistency checks and feedback. To evaluate performance, we compared MOSAIC outputs against gold-standard annotations created by trained human coders. We developed and evaluated MOSAIC using 26 gold standard annotated transcripts for training and 50 transcripts for testing, spanning rheumatology and OB/GYN domains. On the test set, MOSAIC achieved an overall F1 score of 0.928. Performance was highest in the Rheumatology subset (F1 = 0.962) and strongest for Patient Behavior (e.g., patients asking questions, expressing preferences, or showing assertiveness). Ablations revealed that MOSAIC outperforms baseline benchmarking.
- Abstract(参考訳): 臨床コミュニケーションは患者の成果の中心であるが、患者の会話に対する大規模な人的アノテーションは、労働集約的であり、一貫性がなく、拡張が難しいままである。
大規模言語モデルに基づく既存のアプローチは、適応性、解釈可能性、信頼性に欠けるシングルタスクモデルに依存している。
本研究では,コードブック選択とワークフロー計画のためのプランエージェント,最新検索データベースをメンテナンスするための更新エージェント,コードブック誘導検索拡張生成(RAG)を動的に数発のプロンプトで適用するアノテーションエージェントセット,一貫性チェックとフィードバックを提供する検証エージェントの4つを含む,LangGraphベースのアーキテクチャに基づいて構築された多フレーム構造化AIシステム(MOSAIC)を開発した。
性能を評価するため,訓練された人間のコーダが作成したゴールドスタンダードアノテーションとMOSAIC出力を比較した。
トレーニング用26の標準注記文字とテスト用50の転写文字,リウマチとOB/GYNドメインを用いたMOSAICの開発と評価を行った。
テストセットでは、MOSAICはF1総合スコア0.928を記録した。
慢性関節リウマチ群(F1=0.962)では, 患者行動(質問, 嗜好の表現, 主張の表出など)が最多であった。
アブレーションにより、MOSAICはベースラインベンチマークよりも優れていた。
関連論文リスト
- DispatchMAS: Fusing taxonomy and artificial intelligence agents for emergency medical services [49.70819009392778]
大規模言語モデル (LLM) とマルチエージェントシステム (MAS) は、ディスパッチを増強する機会を提供する。
本研究の目的は,現実的なシナリオをシミュレートする分類基盤型マルチエージェントシステムの開発と評価である。
論文 参考訳(メタデータ) (2025-10-24T08:01:21Z) - Retrieval-Augmented Guardrails for AI-Drafted Patient-Portal Messages: Error Taxonomy Construction and Large-Scale Evaluation [5.555479009357263]
EHRポータル経由の非同期患者・クリニックメッセージングは、クリニックのワークロードの増加源である。
1) 5つのドメインと59の粒度のエラーコードからなる臨床基礎的エラーオントロジーを導入し,(2)検索強化評価パイプラインを開発し,(3)拡張性,解釈性,階層的エラー検出を実現するためにDSPyを用いた2段階のプロンプトアーキテクチャを提供する。
論文 参考訳(メタデータ) (2025-09-26T16:42:43Z) - Automated Clinical Problem Detection from SOAP Notes using a Collaborative Multi-Agent LLM Architecture [8.072932739333309]
我々は,このギャップに対処するために,臨床相談チームをモデル化する共同マルチエージェントシステム(MAS)を導入する。
このシステムは、SOAPノートの主観的(S)および目的的(O)セクションのみを分析することによって、臨床上の問題を特定する。
マネージャエージェントは、階層的で反復的な議論に従事し、合意に達するために、動的に割り当てられた専門家エージェントのチームを編成する。
論文 参考訳(メタデータ) (2025-08-29T17:31:24Z) - MedQARo: A Large-Scale Benchmark for Medical Question Answering in Romanian [50.767415194856135]
ルーマニア初の大規模医療QAベンチマークであるMedQARoを紹介する。
がん患者に関連する102,646のQAペアからなる高品質で大規模なデータセットを構築した。
論文 参考訳(メタデータ) (2025-08-22T13:48:37Z) - AMRG: Extend Vision Language Models for Automatic Mammography Report Generation [4.366802575084445]
マンモグラフィーレポート生成は、医療AIにおいて重要で未発見の課題である。
マンモグラフィーレポートを生成するための最初のエンドツーエンドフレームワークであるAMRGを紹介する。
DMIDを用いた高分解能マンモグラフィーと診断レポートの公開データセットであるAMRGのトレーニングと評価を行った。
論文 参考訳(メタデータ) (2025-08-12T06:37:41Z) - MedAgentBoard: Benchmarking Multi-Agent Collaboration with Conventional Methods for Diverse Medical Tasks [27.717720332927296]
我々はMedAgentBoardを紹介する。MedAgentBoardは、マルチエージェントコラボレーション、シングルLLM、および従来のアプローチの体系的評価のための総合的なベンチマークである。
MedAgentBoardには、医療(視覚)質問応答、レイサマリ生成、構造化電子健康記録(EHR)予測モデリング、臨床ワークフロー自動化の4つの多様な医療タスクカテゴリが含まれている。
マルチエージェントコラボレーションは特定のシナリオにおいてメリットを示すが、高度な単一LLMを一貫して上回るものではない。
論文 参考訳(メタデータ) (2025-05-18T11:28:17Z) - TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews [54.35097932763878]
Thematic Analysis (TA) は、構造化されていないテキストデータの潜在意味を明らかにするために広く使われている定性的手法である。
本稿では,多エージェントLEMを用いた人間とAIの協調的テーマ分析フレームワークTAMAを提案する。
TAMA は既存の LLM 支援TA アプローチよりも優れており,高い主題的ヒット率,カバレッジ,独特性を実現している。
論文 参考訳(メタデータ) (2025-03-26T15:58:16Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
MedDGという12種類の消化器疾患に関連する大規模医用対話データセットを構築し,公開する。
MedDGデータセットに基づく2種類の医療対話タスクを提案する。1つは次のエンティティ予測であり、もう1つは医師の反応生成である。
実験結果から,プレトレイン言語モデルと他のベースラインは,両方のタスクに苦戦し,データセットの性能が劣ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T03:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。