論文の概要: Unsupervised Learning of Density Estimates with Topological Optimization
- arxiv url: http://arxiv.org/abs/2512.08895v2
- Date: Tue, 16 Dec 2025 13:48:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-17 14:48:05.906415
- Title: Unsupervised Learning of Density Estimates with Topological Optimization
- Title(参考訳): 位相最適化を用いた密度推定の教師なし学習
- Authors: Sunia Tanweer, Firas A. Khasawneh,
- Abstract要約: カーネル密度推定は、機械学習、推論、ダイナミクス、信号処理において、幅広いアルゴリズムの重要な構成要素である。
最適帯域幅の自動選択と教師なし選択にトポロジに基づく損失関数を用いた教師なし学習手法を提案する。
- 参考スコア(独自算出の注目度): 0.15469452301122175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Kernel density estimation is a key component of a wide variety of algorithms in machine learning, Bayesian inference, stochastic dynamics and signal processing. However, the unsupervised density estimation technique requires tuning a crucial hyperparameter: the kernel bandwidth. The choice of bandwidth is critical as it controls the bias-variance trade-off by over- or under-smoothing the topological features. Topological data analysis provides methods to mathematically quantify topological characteristics, such as connected components, loops, voids et cetera, even in high dimensions where visualization of density estimates is impossible. In this paper, we propose an unsupervised learning approach using a topology-based loss function for the automated and unsupervised selection of the optimal bandwidth and benchmark it against classical techniques -- demonstrating its potential across different dimensions.
- Abstract(参考訳): カーネル密度推定は、機械学習、ベイズ推論、確率力学、信号処理における様々なアルゴリズムの重要な構成要素である。
しかし、教師なし密度推定手法では、カーネル帯域幅という重要なハイパーパラメータをチューニングする必要がある。
帯域幅の選択は、トポロジ的特徴を過度に、あるいは過度に平滑にすることでバイアス分散トレードオフを制御するため、非常に重要である。
トポロジカルデータ解析は、密度推定の可視化が不可能な高次元においても、連結成分、ループ、ヴォイドなどのトポロジカル特性を数学的に定量化する方法を提供する。
本稿では、位相に基づく損失関数を用いた教師なし学習手法を提案し、最適な帯域幅の自動化と教師なし選択を行い、古典的手法と比較し、そのポテンシャルを異なる次元にわたって示す。
関連論文リスト
- Density Estimation via Binless Multidimensional Integration [45.21975243399607]
非パラメトリック、ロバスト、およびデータ効率の高い密度推定のためのBinless Multidimensional Thermodynamic Integration (BMTI)法を提案する。
BMTIは、近隣のデータポイント間の対数密度差を計算し、その密度の対数を推定する。
この方法は様々な複雑な合成高次元データセットでテストされ、化学物理学の文献から現実的なデータセットでベンチマークされる。
論文 参考訳(メタデータ) (2024-07-10T23:45:20Z) - Topological Detection of Phenomenological Bifurcations with Unreliable
Kernel Densities [0.5874142059884521]
現象論的(P型)分岐は力学系の定性的変化である。
これらの分岐を検出する技術の現状は、システム実現のアンサンブルから計算される信頼性の高いカーネル密度推定を必要とする。
本研究では, 信頼できない密度推定を用いたP型分岐の検出手法を提案する。
論文 参考訳(メタデータ) (2024-01-29T20:59:25Z) - Stochastic Nonlinear Control via Finite-dimensional Spectral Dynamic Embedding [20.43835169613882]
本稿では,非線形系の最適制御のためのスペクトルダイナミクス埋め込み制御(SDEC)を提案する。
これはシステムの非線形力学によって誘導される無限次元の特徴表現を明らかにし、状態-作用値関数の線形表現を可能にする。
実用的な実装では、この表現は有限次元のトランケーションを用いて近似される。
論文 参考訳(メタデータ) (2023-04-08T04:23:46Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
相互依存信号のデータセットは、列が強い依存を示す行列として定義される。
ニューラルネットワークは、事前に構造として機能し、基礎となる信号相互依存性を明らかにするために使用される。
ディープ・アンローリングとディープ・平衡に基づくアルゴリズムが開発され、高度に解釈可能で簡潔なディープ・ラーニング・ベース・アーキテクチャを形成する。
論文 参考訳(メタデータ) (2022-03-29T21:00:39Z) - Learning Low-Dimensional Nonlinear Structures from High-Dimensional
Noisy Data: An Integral Operator Approach [5.975670441166475]
本研究では,高次元および雑音観測から低次元非線形構造を学習するためのカーネルスペクトル埋め込みアルゴリズムを提案する。
このアルゴリズムは、基礎となる多様体の事前の知識に依存しない適応的な帯域幅選択手順を用いる。
得られた低次元埋め込みは、データ可視化、クラスタリング、予測などの下流目的にさらに活用することができる。
論文 参考訳(メタデータ) (2022-02-28T22:46:34Z) - Density-Based Clustering with Kernel Diffusion [59.4179549482505]
単位$d$次元ユークリッド球のインジケータ関数に対応するナイーブ密度は、密度に基づくクラスタリングアルゴリズムで一般的に使用される。
局所分布特性と滑らかさの異なるデータに適応する新しいカーネル拡散密度関数を提案する。
論文 参考訳(メタデータ) (2021-10-11T09:00:33Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。