論文の概要: New Approximation Results and Optimal Estimation for Fully Connected Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2512.09853v1
- Date: Wed, 10 Dec 2025 17:36:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-11 15:14:53.615399
- Title: New Approximation Results and Optimal Estimation for Fully Connected Deep Neural Networks
- Title(参考訳): 完全結合型ニューラルネットワークの新しい近似結果と最適推定
- Authors: Zhaoji Tang,
- Abstract要約: citetfarrell2021deepは、一般的なディープフィードフォワードニューラルネットワーク(線形単位活性化関数の修正)推定器のための非漸近的高確率境界を確立する。
より狭く完全に接続されたディープニューラルネットワークのための近似境界を導出することにより、citet[Theorem 1]farrell2021deepが最適な速度を達成するために改善できることが示される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: \citet{farrell2021deep} establish non-asymptotic high-probability bounds for general deep feedforward neural network (with rectified linear unit activation function) estimators, with \citet[Theorem 1]{farrell2021deep} achieving a suboptimal convergence rate for fully connected feedforward networks. The authors suggest that improved approximation of fully connected networks could yield sharper versions of \citet[Theorem 1]{farrell2021deep} without altering the theoretical framework. By deriving approximation bounds specifically for a narrower fully connected deep neural network, this note demonstrates that \citet[Theorem 1]{farrell2021deep} can be improved to achieve an optimal rate (up to a logarithmic factor). Furthermore, this note briefly shows that deep neural network estimators can mitigate the curse of dimensionality for functions with compositional structure and functions defined on manifolds.
- Abstract(参考訳): \citet{farrell2021deep} は、一般的なディープフィードフォワードニューラルネットワークに対する非漸近的高確率境界(修正された線形単位活性化関数を持つ)推定器と、完全に接続されたフィードフォワードネットワークに対する準最適収束率を達成した \citet[Theorem 1]{farrell2021deep} を設定できる。
著者らは、完全に接続されたネットワークの近似を改善することで、理論的な枠組みを変更することなく、よりシャープなバージョンの \citet[Theorem 1]{farrell2021deep} が得られることを示唆している。
このノートは、より狭く完全に接続されたディープニューラルネットワークのための近似境界を導出することにより、最適な速度(対数係数まで)を達成するために \citet[Theorem 1]{farrell2021deep} を改善することができることを示す。
さらに, 深部ニューラルネットワーク推定器は, 構成構造を持つ関数に対する次元性の呪いを軽減できることを示す。
関連論文リスト
- Covering Numbers for Deep ReLU Networks with Applications to Function Approximation and Nonparametric Regression [4.297070083645049]
我々は、完全連結ネットワークの被覆数に対して、(乗法定数まで)下限と上限を密に展開する。
境界の厳密さにより、疎度、量子化、有界対非有界重み、およびネットワーク出力トランケーションの影響の根本的な理解が展開できる。
論文 参考訳(メタデータ) (2024-10-08T21:23:14Z) - Approximation Results for Gradient Descent trained Neural Networks [0.0]
ネットワークは完全に接続された一定の深さ増加幅である。
連続カーネルエラーノルムは、滑らかな関数に必要な自然な滑らかさの仮定の下での近似を意味する。
論文 参考訳(メタデータ) (2023-09-09T18:47:55Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
ニューロシンボリックアプローチは一般に確率論的目的のファジィ近似を利用する。
トラクタブル回路において,これを効率的に計算する方法を示す。
我々は,Warcraftにおける最小コストパスの予測,最小コスト完全マッチングの予測,スドクパズルの解法という3つの課題に対して,アプローチを検証した。
論文 参考訳(メタデータ) (2023-02-28T00:04:22Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
ニューラルネットワークのニューラルカーネル(NTK)に重みのランダムプルーニングが及ぼす影響について検討する。
特に、この研究は、完全に接続されたニューラルネットワークとそのランダムに切断されたバージョン間のNTKの等価性を確立する。
論文 参考訳(メタデータ) (2022-03-27T15:22:19Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
本研究では,2層のシグモダルアクティベーションを持つディープ2ニューラルネットワークを用いて,ボールインジケータ関数を効率よく学習できることを示す。
これは最適化に基づく最初の分離結果であり、より強力なアーキテクチャの近似の利点は、実際に確実に現れる。
論文 参考訳(メタデータ) (2021-12-04T18:07:47Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
ネットワーク幅と収束時間の両方で既知の理論境界を大幅に改善することにより、理論と実践のギャップを埋める一歩を踏み出します。
本研究では, サンプルサイズが2次幅で, 両者の時間対数で線形なネットワークに対して, 地球最小値への収束が保証されていることを示す。
私たちの分析と収束境界は、いつでも合理的なサイズの同等のRELUネットワークに変換できる固定アクティベーションパターンを備えたサロゲートネットワークの構築によって導出されます。
論文 参考訳(メタデータ) (2021-01-12T00:40:45Z) - Generalization bound of globally optimal non-convex neural network
training: Transportation map estimation by infinite dimensional Langevin
dynamics [50.83356836818667]
本稿では,ディープラーニングの最適化を一般化誤差と関連づけて解析する理論フレームワークを提案する。
ニューラルネットワーク最適化分析のための平均場理論やニューラル・タンジェント・カーネル理論のような既存のフレームワークは、そのグローバル収束を示すために、ネットワークの無限幅の限界を取る必要がある。
論文 参考訳(メタデータ) (2020-07-11T18:19:50Z) - Approximation smooth and sparse functions by deep neural networks
without saturation [0.6396288020763143]
本稿では,スムーズかつスパースな関数を近似するために,3つの層を隠蔽したディープニューラルネットワークを構築することを目的とする。
構成したディープネットは, 滑らかかつスパースな関数を制御可能な自由パラメータで近似することで, 最適近似率に達することを証明した。
論文 参考訳(メタデータ) (2020-01-13T09:28:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。