論文の概要: Robust Outlier Detection and Low-Latency Concept Drift Adaptation for Data Stream Regression: A Dual-Channel Architecture
- arxiv url: http://arxiv.org/abs/2512.12289v1
- Date: Sat, 13 Dec 2025 11:17:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-16 17:54:56.203469
- Title: Robust Outlier Detection and Low-Latency Concept Drift Adaptation for Data Stream Regression: A Dual-Channel Architecture
- Title(参考訳): データストリーム回帰のためのロバスト外乱検出と低レイテンシの概念ドリフト適応:デュアルチャネルアーキテクチャ
- Authors: Bingbing Wang, Shengyan Sun, Jiaqi Wang, Yu Tang,
- Abstract要約: 外乱検出と概念ドリフト検出は、データ分析における2つの課題である。
本稿では,関節外乱と概念ドリフト検出のための新しい頑健な回帰フレームワークを提案する。
EWMAD-DTにより強化された本フレームワークは,点アウトレーヤやコンセプトドリフトが共存しても優れた検出性能を示す。
- 参考スコア(独自算出の注目度): 9.977810035655805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Outlier detection and concept drift detection represent two challenges in data analysis. Most studies address these issues separately. However, joint detection mechanisms in regression remain underexplored, where the continuous nature of output spaces makes distinguishing drifts from outliers inherently challenging. To address this, we propose a novel robust regression framework for joint outlier and concept drift detection. Specifically, we introduce a dual-channel decision process that orchestrates prediction residuals into two coupled logic flows: a rapid response channel for filtering point outliers and a deep analysis channel for diagnosing drifts. We further develop the Exponentially Weighted Moving Absolute Deviation with Distinguishable Types (EWMAD-DT) detector to autonomously differentiate between abrupt and incremental drifts via dynamic thresholding. Comprehensive experiments on both synthetic and real-world datasets demonstrate that our unified framework, enhanced by EWMAD-DT, exhibits superior detection performance even when point outliers and concept drifts coexist.
- Abstract(参考訳): 外乱検出と概念ドリフト検出は、データ分析における2つの課題である。
ほとんどの研究はこれらの問題を別々に解決している。
しかし, 出力空間の連続的な性質は, 外部からのドリフトの区別を本質的に困難にしている。
そこで本稿では,ジョイント・アウトリアとコンセプトドリフト検出のための新しいロバスト・レグレッション・フレームワークを提案する。
具体的には、予測残差を2つの結合した論理フローにまとめる2チャンネル決定プロセスを導入する。
さらに, 動的しきい値による急激なドリフトと漸進的なドリフトを自律的に区別するために, EWMAD-DT(Exponentially Weighted moving Absolute Deviation with Distinguishable Types)検出器を開発した。
EWMAD-DTによって強化された我々の統合されたフレームワークは、ポイントアウトレーヤとコンセプトドリフトが共存しても優れた検出性能を示すことを示す。
関連論文リスト
- DiffusionDriveV2: Reinforcement Learning-Constrained Truncated Diffusion Modeling in End-to-End Autonomous Driving [65.7087560656003]
エンドツーエンドの自動運転のための生成拡散モデルは、しばしばモード崩壊に悩まされる。
強化学習を利用して低品質モードを制約し,優れた軌道探索を行うDiffusionDriveV2を提案する。
これにより、そのコアであるガウス混合モデル固有の多重モード性を維持しながら、全体的な出力品質が大幅に向上する。
論文 参考訳(メタデータ) (2025-12-08T17:29:52Z) - Morphing Through Time: Diffusion-Based Bridging of Temporal Gaps for Robust Alignment in Change Detection [51.56484100374058]
既存の変更検出ネットワークを変更することなく空間的・時間的ロバスト性を改善するモジュールパイプラインを導入する。
拡散モジュールは、大きな外観ギャップをブリッジする中間変形フレームを合成し、RoMaは段階的に対応を推定できる。
LEVIR-CD、WHU-CD、DSIFN-CDの実験は、登録精度と下流変化検出の両方において一貫した利得を示した。
論文 参考訳(メタデータ) (2025-11-11T08:40:28Z) - ResAD: Normalized Residual Trajectory Modeling for End-to-End Autonomous Driving [64.42138266293202]
ResADは正規化された残留軌道モデリングフレームワークである。
学習タスクを再編成し、慣性参照からの残留偏差を予測する。
NAVSIMベンチマークでは、ResADはバニラ拡散ポリシーを用いて最先端のPDMS 88.6を達成している。
論文 参考訳(メタデータ) (2025-10-09T17:59:36Z) - Drift No More? Context Equilibria in Multi-Turn LLM Interactions [58.69551510148673]
コンテキストドリフト(Contexts drift)とは、ターン間のゴール一貫性のある振る舞いからモデルが出力する出力の段階的なばらつきである。
シングルターンエラーとは異なり、ドリフトは時間的に展開し、静的な評価指標では捉えにくい。
マルチターンドリフトは、避けられない崩壊というよりも、制御可能な平衡現象として理解できることを示す。
論文 参考訳(メタデータ) (2025-10-09T04:48:49Z) - Unsupervised Online Detection of Pipe Blockages and Leakages in Water Distribution Networks [6.036207670620086]
水分配ネットワーク(WDN)は、パイプ遮断やバックグラウンドリークといった課題に直面している。
本稿では,WDNにおける2種類の障害を検出することを目的とした,教師なしオンライン学習フレームワークを提案する。
論文 参考訳(メタデータ) (2025-08-22T12:23:40Z) - Improving Real-Time Concept Drift Detection using a Hybrid Transformer-Autoencoder Framework [0.0]
応用機械学習では、概念ドリフトはモデルの性能を著しく低下させる。
本研究では,複雑な時間力学をモデル化するためのトランスフォーマーとオートエンコーダを組み合わせたハイブリッドフレームワークを提案する。
以上の結果から,トランスフォーメーション・オートエンコーダは,文献で一般的に用いられるオートエンコーダよりも早く,より感度の高いドリフトを検出した。
論文 参考訳(メタデータ) (2025-08-09T19:39:33Z) - datadriftR: An R Package for Concept Drift Detection in Predictive Models [0.0]
本稿では,コンセプトドリフトを検出するためのRパッケージであるドリフト器を紹介する。
ドリフト検出とドリフトの背後にある原因の理解を深めることのできるプロファイルドリフト検出(PDD)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-12-15T20:59:49Z) - Online Drift Detection with Maximum Concept Discrepancy [13.48123472458282]
最大概念差に基づく新しい概念ドリフト検出手法であるMDD-DDを提案する。
本手法は,概念埋め込みのコントラスト学習により,様々な形態のコンセプトドリフトを適応的に同定することができる。
論文 参考訳(メタデータ) (2024-07-07T13:57:50Z) - Unpaired Adversarial Learning for Single Image Deraining with Rain-Space
Contrastive Constraints [61.40893559933964]
我々は,CDR-GAN という名称の GAN フレームワークにおいて,比較学習手法により,経験者の相互特性を探索する有効な非経験的 SID 手法を開発した。
提案手法は, 合成および実世界の両方のデータセットにおいて, 既存の非対効果のデラミニング手法に対して良好に動作し, 完全教師付きモデルや半教師付きモデルよりも優れている。
論文 参考訳(メタデータ) (2021-09-07T10:00:45Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
不確実ドリフト検出(UDD)は、真のラベルにアクセスすることなくドリフトを検出することができる。
入力データに基づくドリフト検出とは対照的に,現在の入力データが予測モデルの特性に与える影響を考察する。
UDDは2つの合成および10の実世界のデータセットにおいて、回帰処理と分類処理の両方において、他の最先端戦略よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-05T08:56:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。