論文の概要: Multi-fidelity aerodynamic data fusion by autoencoder transfer learning
- arxiv url: http://arxiv.org/abs/2512.13069v1
- Date: Mon, 15 Dec 2025 08:06:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-16 17:54:56.576952
- Title: Multi-fidelity aerodynamic data fusion by autoencoder transfer learning
- Title(参考訳): 自己エンコーダ伝達学習による多自由度空力データ融合
- Authors: Javier Nieto-Centenero, Esther Andrés, Rodrigo Castellanos,
- Abstract要約: 本研究では,不確実性を考慮した空力データ融合を実現するための多要素深層学習フレームワークを提案する。
NACA翼(2D)および超音速翼(3D)データベースの表面圧力分布を調べた。
このフレームワークは、95%を超える、堅牢で行動可能な不確実性帯を生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate aerodynamic prediction often relies on high-fidelity simulations; however, their prohibitive computational costs severely limit their applicability in data-driven modeling. This limitation motivates the development of multi-fidelity strategies that leverage inexpensive low-fidelity information without compromising accuracy. Addressing this challenge, this work presents a multi-fidelity deep learning framework that combines autoencoder-based transfer learning with a newly developed Multi-Split Conformal Prediction (MSCP) strategy to achieve uncertainty-aware aerodynamic data fusion under extreme data scarcity. The methodology leverages abundant Low-Fidelity (LF) data to learn a compact latent physics representation, which acts as a frozen knowledge base for a decoder that is subsequently fine-tuned using scarce HF samples. Tested on surface-pressure distributions for NACA airfoils (2D) and a transonic wing (3D) databases, the model successfully corrects LF deviations and achieves high-accuracy pressure predictions using minimal HF training data. Furthermore, the MSCP framework produces robust, actionable uncertainty bands with pointwise coverage exceeding 95%. By combining extreme data efficiency with uncertainty quantification, this work offers a scalable and reliable solution for aerodynamic regression in data-scarce environments.
- Abstract(参考訳): 正確な空気力学予測は、しばしば高忠実度シミュレーションに依存するが、それらの禁忌計算コストは、データ駆動モデリングにおける適用性を著しく制限する。
この制限は、低コストの低忠実度情報を精度を損なうことなく活用する多忠実度戦略の開発を動機付けている。
この課題に対処するため,本研究では,自動エンコーダに基づく伝達学習とMSCP(Multi-Split Conformal Prediction)戦略を組み合わせた多要素ディープラーニングフレームワークを提案する。
この手法は、少ないHFサンプルを用いて微調整されたデコーダのフリーズナレッジベースとして機能するコンパクトな潜在物理表現を学習するために、豊富な低忠実性(LF)データを活用する。
NACA翼(2D)および超音速翼(3D)データベースの表面圧力分布を実験し、LF偏差の補正に成功し、最小のHFトレーニングデータを用いて高精度な圧力予測を行う。
さらに、MSCPフレームワークは、95%を超える、堅牢で動作可能な不確実性帯を生成する。
極端なデータ効率と不確実な定量化を組み合わせることで、この研究は、データスカース環境での空気力学的回帰のためのスケーラブルで信頼性の高いソリューションを提供する。
関連論文リスト
- Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning(FL)は、複数のエッジデバイスを使用したグローバルモデルの協調トレーニングを可能にする、有望な分散機械学習アプローチである。
動的不均一モデルアグリゲーション(FedDH)と適応ドロップアウト(FedAD)の2つの新しい手法を備えたFedDHAD FLフレームワークを提案する。
これら2つの手法を組み合わせることで、FedDHADは精度(最大6.7%)、効率(最大2.02倍高速)、コスト(最大15.0%小型)で最先端のソリューションを大幅に上回っている。
論文 参考訳(メタデータ) (2025-07-14T16:19:00Z) - Muti-Fidelity Prediction and Uncertainty Quantification with Laplace Neural Operators for Parametric Partial Differential Equations [6.03891813540831]
Laplace Neural Operators (LNOs) は、科学機械学習において有望なアプローチとして登場した。
低忠実度ベースモデルと並列線形/非線形HF補正と動的相互重み付けを組み合わせた多忠実Laplace Neural Operator (MF-LNOs)を提案する。
これにより、LFデータセットとHFデータセットの相関を利用して、興味のある量の正確な推測を行うことができる。
論文 参考訳(メタデータ) (2025-02-01T20:38:50Z) - MIBP-Cert: Certified Training against Data Perturbations with Mixed-Integer Bilinear Programs [50.41998220099097]
トレーニング中のデータエラー、汚職、中毒攻撃は、現代のAIシステムの信頼性に大きな脅威をもたらす。
混合整数双線形プログラミング(MIBP)に基づく新しい認証手法MIBP-Certを紹介する。
摂動データや操作データを通じて到達可能なパラメータの集合を計算することで、可能なすべての結果を予測することができ、堅牢性を保証することができる。
論文 参考訳(メタデータ) (2024-12-13T14:56:39Z) - NeurLZ: An Online Neural Learning-Based Method to Enhance Scientific Lossy Compression [34.30562110131907]
NeurLZは、オンライン学習、クロスフィールド学習、堅牢なエラー制御を統合することで、損失圧縮を強化するように設計されたニューラルネットワークである。
最初の5つの学習エポックの間、NeurLZは89%のビットレート削減を実現し、さらなる最適化により、同等の歪みで最大94%の削減が得られる。
論文 参考訳(メタデータ) (2024-09-09T16:48:09Z) - Ensemble models outperform single model uncertainties and predictions
for operator-learning of hypersonic flows [43.148818844265236]
限られた高忠実度データに基づく科学機械学習(SciML)モデルのトレーニングは、これまで見たことのない状況に対する行動の迅速な予測に1つのアプローチを提供する。
高忠実度データは、探索されていない入力空間におけるSciMLモデルのすべての出力を検証するために、それ自体が限られた量である。
我々は3つの異なる不確実性メカニズムを用いてDeepONetを拡張した。
論文 参考訳(メタデータ) (2023-10-31T18:07:29Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - Multi-fidelity prediction of fluid flow and temperature field based on
transfer learning using Fourier Neural Operator [10.104417481736833]
本研究では,フーリエニューラル演算子に基づく新しい多要素学習手法を提案する。
トランスファーラーニングパラダイムの下では、豊富な低忠実度データと限られた高忠実度データを使用する。
提案した多忠実度モデルの精度を検証するために,3つの典型的な流体および温度予測問題を選択する。
論文 参考訳(メタデータ) (2023-04-14T07:46:03Z) - HFedMS: Heterogeneous Federated Learning with Memorable Data Semantics
in Industrial Metaverse [49.1501082763252]
本稿では,新しい産業メタバースに実用FLを取り入れたHFEDMSを提案する。
動的グルーピングとトレーニングモード変換によってデータの均一性を低下させる。
そして、圧縮された履歴データセマンティクスを融合することで、忘れられた知識を補う。
ストリームされた非I.d.FEMNISTデータセットに対して,368個のシミュレーションデバイスを用いて実験を行った。
論文 参考訳(メタデータ) (2022-11-07T04:33:24Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。