論文の概要: Leveraging LLMs for Structured Data Extraction from Unstructured Patient Records
- arxiv url: http://arxiv.org/abs/2512.13700v1
- Date: Wed, 03 Dec 2025 14:10:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-21 14:22:08.752746
- Title: Leveraging LLMs for Structured Data Extraction from Unstructured Patient Records
- Title(参考訳): 非構造患者記録からの構造化データ抽出のためのLCMの活用
- Authors: Mitchell A. Klusty, Elizabeth C. Solie, Caroline N. Leach, W. Vaiden Logan, Lynnet E. Richey, John C. Gensel, David P. Szczykutowicz, Bryan C. McLellan, Emily B. Collier, Samuel E. Armstrong, V. K. Cody Bumgardner,
- Abstract要約: 手動チャートのレビューは、臨床研究において非常に時間がかかり、資源集約的な要素である。
局所展開型大規模言語モデル(LLM)を利用した臨床ノートからの自動特徴抽出のためのフレームワークを提案する。
このフレームワークは、手動のチャートレビューの負担を軽減し、データキャプチャの一貫性を向上させるLLMシステムの可能性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Manual chart review remains an extremely time-consuming and resource-intensive component of clinical research, requiring experts to extract often complex information from unstructured electronic health record (EHR) narratives. We present a secure, modular framework for automated structured feature extraction from clinical notes leveraging locally deployed large language models (LLMs) on institutionally approved, Health Insurance Portability and Accountability Act (HIPPA)-compliant compute infrastructure. This system integrates retrieval augmented generation (RAG) and structured response methods of LLMs into a widely deployable and scalable container to provide feature extraction for diverse clinical domains. In evaluation, the framework achieved high accuracy across multiple medical characteristics present in large bodies of patient notes when compared against an expert-annotated dataset and identified several annotation errors missed in manual review. This framework demonstrates the potential of LLM systems to reduce the burden of manual chart review through automated extraction and increase consistency in data capture, accelerating clinical research.
- Abstract(参考訳): 手動チャートのレビューは、臨床研究において非常に時間がかかり、資源集約的な要素であり、専門家は構造化されていない電子健康記録(EHR)の物語からしばしば複雑な情報を抽出する必要がある。
本稿では,医療保険ポータビリティ法(Health Insurance Portability and Accountability Act, HIPPA)準拠の計算インフラ上で, ローカルにデプロイされた大規模言語モデル(LLM)を活用する臨床ノートから, 自動的特徴抽出のためのセキュアでモジュール化されたフレームワークを提案する。
本システムは,LLMの検索拡張生成(RAG)と構造化応答法を広く展開可能でスケーラブルなコンテナに統合し,多様な臨床領域に特徴抽出を提供する。
評価において、本フレームワークは、専門家による注釈付きデータセットと比較した場合、大量の患者ノートに存在する複数の医学的特徴にまたがって高い精度を達成し、マニュアルレビューで見逃されたいくつかのアノテーションエラーを特定した。
この枠組みは、自動抽出とデータ取得の整合性向上により、手動グラフレビューの負担を軽減するLLMシステムの可能性を示し、臨床研究を加速させる。
関連論文リスト
- Additive Large Language Models for Semi-Structured Text [3.073796943975155]
CALMは半構造化テキストの解釈可能なフレームワークである。
各コンポーネントのコントリビューションの加算和として結果を予測する。
従来の大規模言語モデルに匹敵するパフォーマンスを実現している。
論文 参考訳(メタデータ) (2025-11-14T23:06:16Z) - Self-Supervised Anatomical Consistency Learning for Vision-Grounded Medical Report Generation [61.350584471060756]
医用画像の臨床的に正確な記述を作成することを目的とした医用レポート生成。
本稿では, 自己監督型解剖学的一貫性学習(SS-ACL)を提案し, 生成された報告を対応する解剖学的領域と整合させる。
SS-ACLは、ヒト解剖学の不変のトップダウン包摂構造にインスパイアされた階層的な解剖学的グラフを構築する。
論文 参考訳(メタデータ) (2025-09-30T08:59:06Z) - From EMR Data to Clinical Insight: An LLM-Driven Framework for Automated Pre-Consultation Questionnaire Generation [9.269061009613033]
複雑な電子カルテ(EMR)から事前コンサルテーションアンケートを作成するための新しい枠組みを提案する。
この枠組みは、明確な臨床知識を構築することによって直接的手法の限界を克服する。
実世界のEMRデータセットを用いて評価し,臨床専門家が検証し,情報カバレッジ,診断関連性,理解可能性,生成時間に優れた性能を示す。
論文 参考訳(メタデータ) (2025-08-01T12:24:49Z) - Uncertainty-Driven Expert Control: Enhancing the Reliability of Medical Vision-Language Models [52.2001050216955]
既存の方法は、モデル構造を調整したり、高品質なデータで微調整したり、好みの微調整によって、医療ビジョン言語モデル(MedVLM)の性能を向上させることを目的としている。
我々は,MedVLMと臨床専門知識の連携を図るために,Expert-Controlled-Free Guidance (Expert-CFG) という,ループ内のエキスパート・イン・ザ・ループフレームワークを提案する。
論文 参考訳(メタデータ) (2025-07-12T09:03:30Z) - Analise Semantica Automatizada com LLM e RAG para Bulas Farmaceuticas [0.0]
本研究では,大規模言語モデル(LLM)と組み合わせたRAGアーキテクチャを用いて,PDF形式の文書解析を自動化する。
本提案では, 埋め込み, 意味データ抽出, 文脈化自然言語応答の生成によるベクトル探索手法を統合する。
論文 参考訳(メタデータ) (2025-07-07T17:48:15Z) - GENIE: Generative Note Information Extraction model for structuring EHR data [14.057531175321113]
生成ノート情報抽出システムGENIEを紹介する。
GENIEは1つのパスで全段落を処理し、エンティティ、アサーションステータス、ロケーション、修飾子、値、目的を高精度に抽出する。
堅牢なデータ準備パイプラインと微調整された小型LLMを使用して、GENIEは複数の情報抽出タスク間での競合性能を実現する。
論文 参考訳(メタデータ) (2025-01-30T15:42:24Z) - Enhancing In-Hospital Mortality Prediction Using Multi-Representational Learning with LLM-Generated Expert Summaries [3.5508427067904864]
ICU患者の院内死亡率(IHM)予測は、時間的介入と効率的な資源配分に重要である。
本研究は、構造化された生理データと臨床ノートをLarge Language Model(LLM)によって生成された専門家要約と統合し、IHM予測精度を向上させる。
論文 参考訳(メタデータ) (2024-11-25T16:36:38Z) - Attribute Structuring Improves LLM-Based Evaluation of Clinical Text Summaries [56.31117605097345]
大規模言語モデル(LLM)は、正確な臨床テキスト要約を生成する可能性を示しているが、根拠付けと評価に関する問題に苦慮している。
本稿では、要約評価プロセスを構成するAttribute Structuring(AS)を用いた一般的な緩和フレームワークについて検討する。
ASは、臨床テキスト要約における人間のアノテーションと自動メトリクスの対応性を一貫して改善する。
論文 参考訳(メタデータ) (2024-03-01T21:59:03Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。