論文の概要: Tree Tensor Networks Methods for Efficient Calculation of Molecular Vibrational Spectra
- arxiv url: http://arxiv.org/abs/2512.15875v1
- Date: Wed, 17 Dec 2025 19:00:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-19 18:10:31.766428
- Title: Tree Tensor Networks Methods for Efficient Calculation of Molecular Vibrational Spectra
- Title(参考訳): 分子振動スペクトルの効率的な計算のためのツリーテンソルネットワーク法
- Authors: Shuo Sun, Richard M. Milbradt, Stefan Knecht, Chandan Kumar, Christian B. Mendl,
- Abstract要約: 我々は,2つのモデル系の振動スペクトルを計算するために,一般的なツリーネットワーク(TTN)を開発した。
行列積状態(MPS)の単純な線形構造から,葉ノードのみが物理的な脚を持つ木まで,さまざまなツリーアーキテクチャを探索する。
- 参考スコア(独自算出の注目度): 10.741384146354093
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We develop and employ general Tree Tensor Networks (TTNs) to compute the vibrational spectra for two model systems: a set of 64-dimensional coupled oscillators and acetonitrile. We explore various tree architectures, ranging from the simple linear structure of Matrix Product States (MPS), to trees where only the leaf nodes carry a physical leg -- as seen in the underlying ansatz of the Multilayer Multiconfiguration Time-Dependent Hartree (ML-MCTDH) method -- and further to more general trees in which all nodes are allowed to possess a physical leg. In addition, we implement Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) methods and Inverse Iteration methods as eigensolvers. By means of comprehensive benchmarking of runtime and accuracy, we demonstrate that sub-wavenumber accuracy in vibrational spectra is achievable with all TTN structures. MPS and three-legged tree tensor network states (T3NS) have similar runtimes, whereas leaf-only trees require significantly more time. All numerical simulations were performed using PyTreeNet, a Python package designed for flexible tensor network computations.
- Abstract(参考訳): 我々は、64次元結合振動子とアセトニトリルからなる2種類のモデル系の振動スペクトルを計算するために、一般的なツリーテンソルネットワーク(TTN)を開発した。
行列積状態(MPS)の単純な線形構造から、葉ノードだけが物理的脚を持つ木(ML-MCTDH)の根底にあるアンサッツに見られる)、さらに全てのノードが物理的脚を持つことができるより一般的な木まで、様々なツリーアーキテクチャを探索する。
さらに,局所最適ブロック条件付き共役勾配法(LOBPCG)と逆イテレーション法を固有解法として実装した。
ランタイムと精度の総合的なベンチマークにより、振動スペクトルのサブウェーブ数精度が全てのTTN構造で達成可能であることを示す。
MPSと3本脚のツリーテンソルネットワーク状態(T3NS)は同様のランタイムを持つが、葉のみのツリーははるかに時間を要する。
数値シミュレーションはすべて、フレキシブルテンソルネットワーク計算用に設計されたPythonパッケージであるPyTreeNetを用いて行われた。
関連論文リスト
- Tensor Decomposition Networks for Fast Machine Learning Interatomic Potential Computations [48.46721044282335]
テンソル分解ネットワーク(TDN)は、計算処理の劇的な高速化と競合する性能を実現する。
1億5500万のDFT計算スナップショットを含む分子緩和データセットPubChemQCRのTDNを評価した。
その結果,TDNは計算処理の劇的な高速化と競合する性能を示した。
論文 参考訳(メタデータ) (2025-07-01T18:46:27Z) - Optimal Tree Tensor Network Operators for Tensor Network Simulations: Applications to Open Quantum Systems [0.0]
ツリーテンソルネットワーク状態(TTNS)は、システムの波動関数を低ランクテンソルの積に分解する。
本稿では,任意の積和シンボル量子演算子に対して,最適かつ正確なツリーテンソルネットワーク演算子(TTNO)を自動構築するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-18T02:15:52Z) - Terminating Differentiable Tree Experts [77.2443883991608]
本稿では,変圧器と表現生成器の組み合わせを用いて木操作を学習するニューラルシンボリック微分木機械を提案する。
まず、専門家の混在を導入することで、各ステップで使用される一連の異なるトランスフォーマーレイヤを取り除きます。
また,モデルが自動生成するステップ数を選択するための新しい終端アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-02T08:45:38Z) - Differentiable Tree Operations Promote Compositional Generalization [106.59434079287661]
微分可能ツリーマシン(DTM)アーキテクチャは、インタプリタと外部メモリとエージェントを統合し、ツリー操作をシーケンシャルに選択することを学ぶ。
DTMは100%、Transformer、Tree Transformer、LSTM、Tree2Tree LSTMといった既存のベースラインは30%以下である。
論文 参考訳(メタデータ) (2023-06-01T14:46:34Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
アルゴリズムの展開は、モデルベースのアルゴリズムの各イテレーションをニューラルネットワーク層として実装することにより、解釈可能で類似のニューラルネットワークアーキテクチャを生成する。
本稿では、Gershgorin disc perfect alignment (GDPA)と呼ばれる最近の線形代数定理を利用して、二進グラフの半定値プログラミング緩和(SDR)のためのプロジェクションフリーアルゴリズムをアンロールする。
実験結果から,我々の未学習ネットワークは純粋モデルベースグラフ分類器よりも優れ,純粋データ駆動ネットワークに匹敵する性能を示したが,パラメータははるかに少なかった。
論文 参考訳(メタデータ) (2021-09-10T07:01:15Z) - Dynamic Probabilistic Pruning: A general framework for
hardware-constrained pruning at different granularities [80.06422693778141]
異なる粒度(重み、カーネル、フィルタ/フィーチャーマップ)での刈り取りを容易にするフレキシブルな新しい刈り取り機構を提案する。
このアルゴリズムをDPP(Dynamic Probabilistic Pruning)と呼ぶ。
DPPは、画像分類のための異なるベンチマークデータセットで訓練された一般的なディープラーニングモデルを刈り取る際に、競合圧縮率と分類精度を達成する。
論文 参考訳(メタデータ) (2021-05-26T17:01:52Z) - Spectral Top-Down Recovery of Latent Tree Models [13.681975313065477]
スペクトルトップダウン・リカバリ (STDR) は、大きな潜在木モデルを推定するための分割・コンカレントアプローチである。
STDRの分割ステップは非ランダムです。
代わりに、観測されたノードに関連する適切なラプラシア行列のFiedlerベクトルに基づいている。
私達はSTDRが統計的に一貫性があることを証明し、高い確率で木を正確に回復するために必要なサンプルの数を縛ります。
論文 参考訳(メタデータ) (2021-02-26T02:47:42Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
この論文は、いくつかの重要な側面で深い森林のアイデアをさらに拡張します。
我々は、ノードがハードバイナリ決定ではなく、確率的ルーティング決定、すなわちソフトルーティングを行う確率的ツリーを採用する。
MNISTデータセットの実験は、私たちの力のある深部森林が[1]、[3]よりも優れたまたは匹敵するパフォーマンスを達成できることを示しています。
論文 参考訳(メタデータ) (2020-12-29T18:05:05Z) - A Flexible Pipeline for the Optimization of CSG Trees [3.622365857213782]
CSG木は、ブール集合演算と幾何学的プリミティブを組み合わせて幾何学を表現するための直感的だが強力な技法である。
本稿では,新しい木最適化手法と既存の木最適化手法を体系的に比較し,木編集性を重視したフレキシブルな処理パイプラインを提案する。
論文 参考訳(メタデータ) (2020-08-09T06:45:10Z) - The Tree Ensemble Layer: Differentiability meets Conditional Computation [8.40843862024745]
我々は、異なる決定木(ソフトツリー)のアンサンブルからなるニューラルネットワークのための新しいレイヤを導入する。
異なる木は文学において有望な結果を示すが、典型的には条件計算をサポートしないため、訓練と推論が遅い。
我々は、空間性を利用する特殊前方及び後方伝播アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-02-18T18:05:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。