論文の概要: Optimal Tree Tensor Network Operators for Tensor Network Simulations: Applications to Open Quantum Systems
- arxiv url: http://arxiv.org/abs/2407.13098v2
- Date: Wed, 28 Aug 2024 07:18:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 20:28:56.903907
- Title: Optimal Tree Tensor Network Operators for Tensor Network Simulations: Applications to Open Quantum Systems
- Title(参考訳): テンソルネットワークシミュレーションのための最適ツリーテンソルネットワーク演算子:オープン量子システムへの応用
- Authors: Weitang Li, Jiajun Ren, Hengrui Yang, Haobin Wang, Zhigang Shuai,
- Abstract要約: ツリーテンソルネットワーク状態(TTNS)は、システムの波動関数を低ランクテンソルの積に分解する。
本稿では,任意の積和シンボル量子演算子に対して,最適かつ正確なツリーテンソルネットワーク演算子(TTNO)を自動構築するアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tree tensor network states (TTNS) decompose the system wavefunction to the product of low-rank tensors based on the tree topology, serving as the foundation of the multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) method. In this work, we present an algorithm that automatically constructs the optimal and exact tree tensor network operators (TTNO) for any sum-of-product symbolic quantum operator.The construction is based on the minimum vertex cover of a bipartite graph. With the optimal TTNO, we simulate open quantum systems such as spin relaxation dynamics in the spin-boson model and charge transport in molecular junctions. In these simulations, the environment is treated as discrete modes and its wavefunction is evolved on equal footing with the system. We employ the Cole-Davidson spectral density to model the glassy phonon environment, and incorporate temperature effects via thermo field dynamics. Our results show that the computational cost scales linearly with the number of discretized modes, demonstrating the efficiency of our approach.
- Abstract(参考訳): ツリーテンソルネットワーク状態(TTNS)は、木トポロジーに基づく低ランクテンソルの積に系波動関数を分解し、マルチ層多重構成時間依存Hartree(ML-MCTDH)法の基盤となる。
本研究では,任意の積のシンボリック量子演算子に対して,最適かつ正確なツリーテンソルネットワーク演算子(TTNO)を自動構築するアルゴリズムを提案する。
最適TTNOにより、スピン-ボソンモデルにおけるスピン緩和ダイナミクスや分子接合における電荷輸送などのオープン量子系をシミュレートする。
これらのシミュレーションでは、環境は離散モードとして扱われ、その波動関数はシステムと同等の足場で進化する。
ガラス状のフォノン環境をモデル化するためにコールダビッドソンスペクトル密度を用い、熱場力学による温度効果を取り入れた。
その結果,計算コストは離散化モードの数に比例して線形にスケールし,提案手法の効率性を実証した。
関連論文リスト
- Connectivity matters: Impact of bath modes ordering and geometry in Open Quantum System simulation with Matrix Product States [0.0]
結合系+環境状態を行列積状態として記述できるボソニックな環境モードの単純な順序付けにより,収束に必要な結合次元を大幅に削減できることを示す。
その結果,テンソルネットワークのトポロジを微調整する複雑な相関解析は不要であることが示唆された。
論文 参考訳(メタデータ) (2024-09-06T09:20:08Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Pairing-based graph neural network for simulating quantum materials [0.8192907805418583]
量子多体系をシミュレーションするためのペアリング型グラフニューラルネットワークを開発した。
我々のニューラルネットワークを用いた変分モンテカルロは、多数の電子システムをシミュレートするための正確で柔軟でスケーラブルな手法を同時に提供します。
論文 参考訳(メタデータ) (2023-11-03T17:12:29Z) - Tree tensor network state approach for solving hierarchical equations of
motion [0.0]
階層型運動方程式(英:hierarchical equations of Motion, HEOM)は、数値的に正確な開量子系力学の手法である。
提案手法は従来のHEOM法と一貫した結果が得られることを示す。
さらに、真のTTNSによるシミュレーションは、1次元の行列積状態分解スキームの4倍高速である。
論文 参考訳(メタデータ) (2023-04-11T11:40:15Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - A Multisite Decomposition of the Tensor Network Path Integrals [0.0]
我々は、テンソルネットワークパス積分(TNPI)フレームワークを拡張し、局所的な散逸環境を持つ量子システムを効率的にシミュレートする。
MS-TNPI法は溶媒と結合した様々な拡張量子系の研究に有用である。
論文 参考訳(メタデータ) (2021-09-20T17:55:53Z) - A tensor network representation of path integrals: Implementation and
analysis [0.0]
ファインマン・ヴァーノン効果関数を含む経路積分シミュレーションのテンソルネットワークに基づく新しい分解法を提案する。
影響関数によって導入された有限の一時的な非局所相互作用は、行列積状態表現を用いて非常に効率的に捉えることができる。
AP-TNPIフレームワークの柔軟性により、非平衡量子力学のための経路積分法ファミリーに新たな期待が持てる。
論文 参考訳(メタデータ) (2021-06-23T16:41:54Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
少数のアンシラ量子ビットを用いて環境との相互作用をシミュレートするデジタル量子アルゴリズムを開発した。
逆イジングモデルの熱状態のシミュレーションによるアルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2021-03-04T18:21:00Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
光核の基底状態波動関数をモデル化するためのニューラルネットワーク量子状態アンサッツを導入する。
我々は、Aleq 4$核の結合エネルギーと点核密度を、上位のピオンレス実効場理論から生じるものとして計算する。
論文 参考訳(メタデータ) (2020-07-28T14:52:28Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
本稿では,勾配降下による終端から終端までのアナログニューラルネットワークの学習法を提案する。
数学的には、アナログニューラルネットワークのクラス(非線形抵抗性ネットワークと呼ばれる)がエネルギーベースモデルであることが示される。
我々の研究は、オンチップ学習をサポートする、超高速でコンパクトで低消費電力のニューラルネットワークの新世代の開発を導くことができる。
論文 参考訳(メタデータ) (2020-06-02T23:38:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。