論文の概要: Polyharmonic Cascade
- arxiv url: http://arxiv.org/abs/2512.17671v1
- Date: Fri, 19 Dec 2025 15:14:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-22 19:25:54.454306
- Title: Polyharmonic Cascade
- Title(参考訳): ポリハーモニックカスケード
- Authors: Yuriy N. Bakhvalov,
- Abstract要約: ポリハーモニック・カスケード(Polyharmonic cascade)は、ポリハーモニック・スプラインのパッケージ。
各層はランダム関数の理論と無関心の原理から厳密に導かれる。
ポリハーモニックカスケードでは勾配降下に代わる訓練法が提案されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a deep machine learning architecture, the "polyharmonic cascade" -- a sequence of packages of polyharmonic splines, where each layer is rigorously derived from the theory of random functions and the principles of indifference. This makes it possible to approximate nonlinear functions of arbitrary complexity while preserving global smoothness and a probabilistic interpretation. For the polyharmonic cascade, a training method alternative to gradient descent is proposed: instead of directly optimizing the coefficients, one solves a single global linear system on each batch with respect to the function values at fixed "constellations" of nodes. This yields synchronized updates of all layers, preserves the probabilistic interpretation of individual layers and theoretical consistency with the original model, and scales well: all computations reduce to 2D matrix operations efficiently executed on a GPU. Fast learning without overfitting on MNIST is demonstrated.
- Abstract(参考訳): 本稿では,多調和スプラインのパッケージ列である「多調和カスケード」というディープラーニングアーキテクチャについて述べる。
これにより、大域的滑らかさと確率論的解釈を保ちながら、任意の複雑性の非線形関数を近似することができる。
多調和カスケードでは、勾配降下に代わる訓練法が提案されている: 係数を直接最適化する代わりに、ノードの固定された「凝縮」における関数値に関して、各バッチ上の1つの大域線形系を解く。
これにより、すべてのレイヤの同期更新が得られ、個々のレイヤの確率論的解釈と元のモデルとの理論的整合性が保たれる。
MNISTに過度に適合しない高速学習を実証する。
関連論文リスト
- Polyharmonic Spline Packages: Composition, Efficient Procedures for Computation and Differentiation [0.0]
本稿では,ポリハーモニックスプラインのパッケージから構築したカスケードアーキテクチャを提案する。
カスケードを通したフォワード計算とエンド・ツー・エンドの微分のために、効率的な行列プロシージャが提示される。
論文 参考訳(メタデータ) (2025-12-18T16:21:09Z) - Low-Rank Tensor Recovery via Variational Schatten-p Quasi-Norm and Jacobian Regularization [49.85875869048434]
暗黙的神経表現のためのニューラルネットワークによりパラメータ化されたCPベースの低ランクテンソル関数を提案する。
本研究では、スペーサーCP分解を実現するために、冗長なランク1成分に変分Schatten-p quasi-normを導入する。
滑らか性のために、ヤコビアンとハッチンソンのトレース推定器のスペクトルノルムに基づく正規化項を提案する。
論文 参考訳(メタデータ) (2025-06-27T11:23:10Z) - GP-FL: Model-Based Hessian Estimation for Second-Order Over-the-Air Federated Learning [52.295563400314094]
2次法は学習アルゴリズムの収束率を改善するために広く採用されている。
本稿では,無線チャネルに適した新しい2次FLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-05T04:27:41Z) - Graphon Particle Systems, Part II: Dynamics of Distributed Stochastic Continuum Optimization [6.48447388642063]
ノード連続体を持つグラフオン上での分散最適化問題について検討する。
グラノン上での勾配降下と勾配追従アルゴリズムを提案する。
時間変化アルゴリズムを適切に選択することにより、すべてのノードの状態が接続されたグラフに対して$mathcalLinfty$-consensusを達成することを示す。
論文 参考訳(メタデータ) (2024-07-03T02:47:39Z) - Hessian Based Smoothing Splines for Manifold Learning [0.228438857884398]
多様体学習における多次元平滑化スプラインアルゴリズムを提案する。
平らな多様体のソボレフ空間上の二次形式に、薄板スプラインの曲げエネルギーペナルティを一般化する。
解の存在と一意性は、ヒルベルト空間を再現する理論を適用することによって示される。
論文 参考訳(メタデータ) (2023-02-10T02:49:05Z) - Learning Globally Smooth Functions on Manifolds [94.22412028413102]
スムーズな関数の学習は、線形モデルやカーネルモデルなどの単純なケースを除いて、一般的に難しい。
本研究は,半無限制約学習と多様体正規化の技法を組み合わせることで,これらの障害を克服することを提案する。
軽度条件下では、この手法は解のリプシッツ定数を推定し、副生成物として大域的に滑らかな解を学ぶ。
論文 参考訳(メタデータ) (2022-10-01T15:45:35Z) - Scaling Structured Inference with Randomization [64.18063627155128]
本稿では、構造化されたモデルを数万の潜在状態に拡張するためにランダム化された動的プログラミング(RDP)のファミリを提案する。
我々の手法は古典的DPベースの推論に広く適用できる。
また、自動微分とも互換性があり、ニューラルネットワークとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-12-07T11:26:41Z) - SPINE: Soft Piecewise Interpretable Neural Equations [0.0]
完全に接続されたネットワークはユビキタスだが解釈不能である。
本論文は,個々の部品に設定操作を施すことにより,ピースワイズに新しいアプローチを採っている(一部)。
完全に接続されたレイヤを解釈可能なレイヤに置き換えなければならない、さまざまなアプリケーションを見つけることができる。
論文 参考訳(メタデータ) (2021-11-20T16:18:00Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
アルゴリズムの展開は、モデルベースのアルゴリズムの各イテレーションをニューラルネットワーク層として実装することにより、解釈可能で類似のニューラルネットワークアーキテクチャを生成する。
本稿では、Gershgorin disc perfect alignment (GDPA)と呼ばれる最近の線形代数定理を利用して、二進グラフの半定値プログラミング緩和(SDR)のためのプロジェクションフリーアルゴリズムをアンロールする。
実験結果から,我々の未学習ネットワークは純粋モデルベースグラフ分類器よりも優れ,純粋データ駆動ネットワークに匹敵する性能を示したが,パラメータははるかに少なかった。
論文 参考訳(メタデータ) (2021-09-10T07:01:15Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。