論文の概要: Out-of-Distribution Detection in Molecular Complexes via Diffusion Models for Irregular Graphs
- arxiv url: http://arxiv.org/abs/2512.18454v1
- Date: Sat, 20 Dec 2025 17:56:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-23 18:54:32.345541
- Title: Out-of-Distribution Detection in Molecular Complexes via Diffusion Models for Irregular Graphs
- Title(参考訳): 不規則グラフの拡散モデルによる分子複合体の分布外検出
- Authors: David Graber, Victor Armegioiu, Rebecca Buller, Siddhartha Mishra,
- Abstract要約: 拡散モデル上に構築された複雑な3次元グラフデータに対する確率的OOD検出フレームワークを提案する。
単一の確率フローODEがサンプルごとのログライクな状態を生成し、分散シフトの典型的なスコアを提供する。
タンパク質-リガンド複合体のアプローチを検証し、厳密なOODデータセットを構築する。
- 参考スコア(独自算出の注目度): 11.928558263824213
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predictive machine learning models generally excel on in-distribution data, but their performance degrades on out-of-distribution (OOD) inputs. Reliable deployment therefore requires robust OOD detection, yet this is particularly challenging for irregular 3D graphs that combine continuous geometry with categorical identities and are unordered by construction. Here, we present a probabilistic OOD detection framework for complex 3D graph data built on a diffusion model that learns a density of the training distribution in a fully unsupervised manner. A key ingredient we introduce is a unified continuous diffusion over both 3D coordinates and discrete features: categorical identities are embedded in a continuous space and trained with cross-entropy, while the corresponding diffusion score is obtained analytically via posterior-mean interpolation from predicted class probabilities. This yields a single self-consistent probability-flow ODE (PF-ODE) that produces per-sample log-likelihoods, providing a principled typicality score for distribution shift. We validate the approach on protein-ligand complexes and construct strict OOD datasets by withholding entire protein families from training. PF-ODE likelihoods identify held-out families as OOD and correlate strongly with prediction errors of an independent binding-affinity model (GEMS), enabling a priori reliability estimates on new complexes. Beyond scalar likelihoods, we show that multi-scale PF-ODE trajectory statistics - including path tortuosity, flow stiffness, and vector-field instability - provide complementary OOD information. Modeling the joint distribution of these trajectory features yields a practical, high-sensitivity detector that improves separation over likelihood-only baselines, offering a label-free OOD quantification workflow for geometric deep learning.
- Abstract(参考訳): 予測機械学習モデルは一般的に分布内データに優れるが、その性能は分布外入力(OOD)で低下する。
したがって、信頼性の高い配置は、堅牢なOOD検出を必要とするが、連続幾何学とカテゴリー的アイデンティティを組み合わせた不規則な3Dグラフでは特に困難である。
本稿では,拡散モデル上に構築された複雑な3次元グラフデータに対する確率的OOD検出フレームワークを提案する。
分類的アイデンティティは連続空間に埋め込まれ、クロスエントロピーで訓練され、対応する拡散スコアは予測されたクラス確率から後平均補間によって解析的に得られる。
これにより、単一自己一貫性の確率フローODE (PF-ODE) が生成され、分散シフトの典型的なスコアを提供する。
我々は,タンパク質-リガンド複合体へのアプローチを検証するとともに,タンパク質ファミリー全体を訓練から遠ざけ,厳密なOODデータセットを構築する。
PF-ODEはホールドアウトファミリーをOODと同定し、独立結合親和性モデル(GEMS)の予測誤差と強く相関し、新しい複合体の優先順位推定を可能にする。
また,多スケールPF-ODEトラジェクトリ統計(経路の剛性,流れの剛性,ベクトル場不安定性など)が相補的なOOD情報を提供することを示す。
これらの軌道特徴の関節分布をモデル化すると、確率のみのベースライン上の分離を改善する実用的な高感度検出器が得られ、幾何学的深層学習のためのラベルのないOOD量子化ワークフローを提供する。
関連論文リスト
- SCOPED: Score-Curvature Out-of-distribution Proximity Evaluator for Diffusion [5.008779702997125]
アウト・オブ・ディストリビューション(OOD)検出は、視覚、ロボット工学、強化学習などにおける機械学習システムの信頼性の高い展開に不可欠である。
SCOPED(Score-Curvature Out-of-distribution Proximity Evaluator for Diffusion)を紹介する。
SCOPEDは、多様なデータセットでトレーニングされた単一の拡散モデルから計算され、モデルのスコア関数のジャコビアントレースと2乗ノルムを単一のテスト統計量に結合する。
4つのビジョンベンチマークでは、SCOPEDは計算コストの低いにもかかわらず、競合または最先端の精度リコールスコアを達成している。
論文 参考訳(メタデータ) (2025-10-01T20:54:49Z) - Learning Distributions of Complex Fluid Simulations with Diffusion Graph Networks [23.196852966408482]
平衡分布から状態を直接サンプリングできるグラフベース潜在拡散モデルを提案する。
これにより、長くて高価な数値シミュレーションを実行することなく、効率的な流量統計のジオメトリを実現できる。
本手法を乱流中の3次元翼模型の圧力予測などの流体力学タスクに適用する。
論文 参考訳(メタデータ) (2025-03-19T13:04:39Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
拡散確率モデル(Denoising Diffusion Probabilistic Models, DDPM)は、例外的な品質を持つ同時代の生成モデルである。
本研究では,ベイズ式による確率推定過程を分解するために,専用設計を用いたリンク予測のための新しい生成モデルを構築した。
提案手法は,(1)再トレーニングを伴わないデータセット間の転送可能性,(2)限られたトレーニングデータに対する有望な一般化,(3)グラフ敵攻撃に対する堅牢性など,多くの利点を示す。
論文 参考訳(メタデータ) (2024-09-13T02:23:55Z) - Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models [71.39421638547164]
本稿では,入力分子と再構成グラフの類似性を比較する補助拡散モデルに基づくフレームワークを用いてOOD分子を検出することを提案する。
IDトレーニングサンプルの再構成に向けた生成バイアスのため、OOD分子の類似度スコアは検出を容易にするためにはるかに低い。
本研究は,PGR-MOOD(PGR-MOOD)とよばれる分子OOD検出のためのプロトタイプグラフ再構成のアプローチを開拓し,3つのイノベーションを生かした。
論文 参考訳(メタデータ) (2024-04-24T03:25:53Z) - Topological Detection of Phenomenological Bifurcations with Unreliable
Kernel Densities [0.5874142059884521]
現象論的(P型)分岐は力学系の定性的変化である。
これらの分岐を検出する技術の現状は、システム実現のアンサンブルから計算される信頼性の高いカーネル密度推定を必要とする。
本研究では, 信頼できない密度推定を用いたP型分岐の検出手法を提案する。
論文 参考訳(メタデータ) (2024-01-29T20:59:25Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
本稿では,未知の低次元線形部分空間上でデータをサポートする場合の拡散モデルのスコア近似,推定,分布回復について検討する。
適切に選択されたニューラルネットワークアーキテクチャでは、スコア関数を正確に近似し、効率的に推定することができる。
推定スコア関数に基づいて生成された分布は、データ幾何学構造を捕捉し、データ分布の近傍に収束する。
論文 参考訳(メタデータ) (2023-02-14T17:02:35Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
アイソメトリーを用いて、多様体学習と密度推定を分離する。
また、確率分布を歪ませない明示的な逆数を持つ埋め込みを設計するためにオートエンコーダを用いる。
論文 参考訳(メタデータ) (2022-03-08T08:57:43Z) - General stochastic separation theorems with optimal bounds [68.8204255655161]
分離性の現象が明らかになり、機械学習で人工知能(AI)システムのエラーを修正し、AI不安定性を分析するために使用された。
エラーやエラーのクラスタは、残りのデータから分離することができる。
AIシステムを修正する能力は、それに対する攻撃の可能性も開き、高次元性は、同じ分離性によって引き起こされる脆弱性を誘発する。
論文 参考訳(メタデータ) (2020-10-11T13:12:41Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。