論文の概要: Benchmarking neural surrogates on realistic spatiotemporal multiphysics flows
- arxiv url: http://arxiv.org/abs/2512.18595v1
- Date: Sun, 21 Dec 2025 05:04:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-23 18:54:32.408211
- Title: Benchmarking neural surrogates on realistic spatiotemporal multiphysics flows
- Title(参考訳): 実時間時空間多物理流れにおけるニューラルサロゲートのベンチマーク
- Authors: Runze Mao, Rui Zhang, Xuan Bai, Tianhao Wu, Teng Zhang, Zhenyi Chen, Minqi Lin, Bocheng Zeng, Yangchen Xu, Yingxuan Xiang, Haoze Zhang, Shubham Goswami, Pierre A. Dawe, Yifan Xu, Zhenhua An, Mengtao Yan, Xiaoyi Lu, Yi Wang, Rongbo Bai, Haobu Gao, Xiaohang Fang, Han Li, Hao Sun, Zhi X. Chen,
- Abstract要約: 我々は、困難でアプリケーション駆動のリアクティブフローでニューラルネットワークサロゲートをテストするために設計された厳格なベンチマークフレームワークであるREALM(Realistic AI Learning for Multiphysics)を提案する。
我々は、スペクトル演算子、畳み込みモデル、トランスフォーマー、ポイントワイド演算子、グラフ/メッシュネットワークを含む、12以上の代表代理モデルファミリをベンチマークする。
i)次元性、剛性、メッシュの不規則性によって共同で管理されるスケーリング障壁により、ロールアウトエラーが急速に増加すること、(ii)パラメータカウントよりもアーキテクチャ上の帰納バイアスによって主に制御されるパフォーマンス、(iii)精度の指標と物理的にの間にある永続的なギャップ、の3つの頑健な傾向を識別する。
- 参考スコア(独自算出の注目度): 18.240532888032394
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting multiphysics dynamics is computationally expensive and challenging due to the severe coupling of multi-scale, heterogeneous physical processes. While neural surrogates promise a paradigm shift, the field currently suffers from an "illusion of mastery", as repeatedly emphasized in top-tier commentaries: existing evaluations overly rely on simplified, low-dimensional proxies, which fail to expose the models' inherent fragility in realistic regimes. To bridge this critical gap, we present REALM (REalistic AI Learning for Multiphysics), a rigorous benchmarking framework designed to test neural surrogates on challenging, application-driven reactive flows. REALM features 11 high-fidelity datasets spanning from canonical multiphysics problems to complex propulsion and fire safety scenarios, alongside a standardized end-to-end training and evaluation protocol that incorporates multiphysics-aware preprocessing and a robust rollout strategy. Using this framework, we systematically benchmark over a dozen representative surrogate model families, including spectral operators, convolutional models, Transformers, pointwise operators, and graph/mesh networks, and identify three robust trends: (i) a scaling barrier governed jointly by dimensionality, stiffness, and mesh irregularity, leading to rapidly growing rollout errors; (ii) performance primarily controlled by architectural inductive biases rather than parameter count; and (iii) a persistent gap between nominal accuracy metrics and physically trustworthy behavior, where models with high correlations still miss key transient structures and integral quantities. Taken together, REALM exposes the limits of current neural surrogates on realistic multiphysics flows and offers a rigorous testbed to drive the development of next-generation physics-aware architectures.
- Abstract(参考訳): 多次物理力学の予測は計算コストが高く、多スケールで不均一な物理過程の重大結合のため困難である。
既存の評価は単純化された低次元プロキシに過度に依存しており、現実的な状況下でモデル固有の脆弱さを露呈することができない。
この重要なギャップを埋めるために、我々は、困難でアプリケーション駆動のリアクティブフローでニューラルネットワークサロゲートをテストするために設計された厳格なベンチマークフレームワークであるREALM(Realistic AI Learning for Multiphysics)を紹介する。
REALMは、標準的な多物理問題から複雑な推進および火災安全シナリオまで、多物理認識前処理と堅牢なロールアウト戦略を含む、標準化されたエンドツーエンドのトレーニングおよび評価プロトコルにまたがる11の高忠実データセットを備えている。
このフレームワークを用いて、スペクトル演算子、畳み込みモデル、トランスフォーマー、ポイントワイド演算子、グラフ/メシュネットワークを含む12の代表的な代理モデルファミリを体系的にベンチマークし、3つの頑健なトレンドを識別する。
一 寸法、剛性及びメッシュの不規則性により共同支配されるスケーリング障壁により、ロールアウトエラーが急速に増加すること。
二 主にパラメータカウントよりも建築上の帰納バイアスにより管理される性能
三 名目精度の指標と物理的に信頼に値する行動の間には、高い相関関係を持つモデルが重要な過渡的構造と積分量を見落としているという永続的なギャップがある。
まとめると、REALMは現実的な多物理フローにおける現在の神経サロゲートの限界を明らかにし、次世代の物理認識アーキテクチャの開発を促進するための厳密なテストベッドを提供する。
関連論文リスト
- Unlocking Out-of-Distribution Generalization in Dynamics through Physics-Guided Augmentation [46.40087254928057]
物理誘導量拡張プラグインのSPARKについて述べる。
多様なベンチマーク実験により、SPARKは最先端のベースラインを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2025-10-28T09:30:35Z) - Rethinking the Role of Dynamic Sparse Training for Scalable Deep Reinforcement Learning [58.533203990515034]
ニューラルネットワークのスケーリングは機械学習における画期的な進歩をもたらしたが、このパラダイムは深層強化学習(DRL)では失敗している。
我々は、動的スパーストレーニング戦略が、アーキテクチャの改善によって確立された主要なスケーラビリティ基盤を補完するモジュール固有の利点を提供することを示す。
アーキテクチャ改善の利点を生かした実践的なフレームワークであるModule-Specific Training (MST) にこれらの知見を精査し、アルゴリズムの修正なしに様々なRLアルゴリズムをまたいだ大幅なスケーラビリティ向上を示す。
論文 参考訳(メタデータ) (2025-10-14T03:03:08Z) - Drift No More? Context Equilibria in Multi-Turn LLM Interactions [58.69551510148673]
コンテキストドリフト(Contexts drift)とは、ターン間のゴール一貫性のある振る舞いからモデルが出力する出力の段階的なばらつきである。
シングルターンエラーとは異なり、ドリフトは時間的に展開し、静的な評価指標では捉えにくい。
マルチターンドリフトは、避けられない崩壊というよりも、制御可能な平衡現象として理解できることを示す。
論文 参考訳(メタデータ) (2025-10-09T04:48:49Z) - Models of Heavy-Tailed Mechanistic Universality [62.107333654304014]
トレーニングニューラルネットワークにおける重み付け行動を引き起こす属性を探索するために,ランダム行列モデルのファミリーを提案する。
このモデルの下では、3つの独立した因子の組み合わせによって、尾翼の電力法則によるスペクトル密度が生じる。
ニューラルネットワークトレーニングの5段階以上において、ニューラルネットワークのスケーリング法則、軌道、および5段階以上の位相を含む重尾の出現に対する我々のモデルの影響について論じる。
論文 参考訳(メタデータ) (2025-06-04T00:55:01Z) - Time Marching Neural Operator FE Coupling: AI Accelerated Physics Modeling [3.0635300721402228]
本研究は、物理インフォームド・ディープ・オペレーター・ネットワークをドメイン分解によりFEMと統合する新しいハイブリッド・フレームワークを導入する。
動的システムの課題に対処するため、DeepONetに直接タイムステッピングスキームを組み込み、長期エラーの伝搬を大幅に低減する。
提案手法は, 従来手法に比べて収束率を最大20%向上させるとともに, 誤差マージンが3%未満の解の忠実度を保ちながら, 収束率の高速化を図っている。
論文 参考訳(メタデータ) (2025-04-15T16:54:04Z) - Implicit Neural Differential Model for Spatiotemporal Dynamics [5.1854032131971195]
In-PiNDiffは、安定時間力学のための新しい暗黙の物理積分型ニューラル微分可能解法である。
深い平衡モデルにインスパイアされたIm-PiNDiffは、暗黙の固定点層を用いて状態を前進させ、堅牢な長期シミュレーションを可能にする。
Im-PiNDiffは優れた予測性能、数値安定性の向上、メモリとコストの大幅な削減を実現している。
論文 参考訳(メタデータ) (2025-04-03T04:07:18Z) - StFT: Spatio-temporal Fourier Transformer for Long-term Dynamics Prediction [10.64762092324374]
本稿では,自動回帰時変変換器(FTStours)を提案する。
FTStoursは、マクロスケールとマイクロスペーススケールの両方にわたる基礎となるダイナミクスをキャプチャする。
3つのベンチマークデータセットで行った評価は、最先端のML手法に対する我々のアプローチの利点を示している。
論文 参考訳(メタデータ) (2025-03-14T22:04:03Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
限定データによる微分方程式の解法として,注目型数値解法(AttNS)を提案する。
AttNSは、モデル一般化とロバスト性の向上におけるResidual Neural Networks(ResNet)のアテンションモジュールの効果にインスパイアされている。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Robust Graph Representation Learning via Predictive Coding [46.22695915912123]
予測符号化は、当初脳の情報処理をモデル化するために開発されたメッセージパッシングフレームワークである。
本研究では,予測符号化のメッセージパス規則に依存するモデルを構築する。
提案したモデルは,帰納的タスクと帰納的タスクの両方において,標準的なモデルに匹敵する性能を示す。
論文 参考訳(メタデータ) (2022-12-09T03:58:22Z) - Interfacing Finite Elements with Deep Neural Operators for Fast
Multiscale Modeling of Mechanics Problems [4.280301926296439]
本研究では,機械学習を用いたマルチスケールモデリングのアイデアを探求し,高コストソルバの効率的なサロゲートとしてニューラル演算子DeepONetを用いる。
DeepONetは、きめ細かい解法から取得したデータを使って、基礎とおそらく未知のスケールのダイナミクスを学習してオフラインでトレーニングされている。
精度とスピードアップを評価するための様々なベンチマークを提示し、特に時間依存問題に対する結合アルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-25T20:46:08Z) - Action-Conditional Recurrent Kalman Networks For Forward and Inverse
Dynamics Learning [17.80270555749689]
ロボットのモデルベース制御において、正確な前方および逆ダイナミクスモデルの推定が重要な要素である。
本稿では,フォワードモデル学習のためのアーキテクチャと,逆モデル学習のためのアーキテクチャを提案する。
どちらのアーキテクチャも、予測性能の点で、既存のモデル学習フレームワークと分析モデルを大きく上回っている。
論文 参考訳(メタデータ) (2020-10-20T11:28:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。