論文の概要: Time Marching Neural Operator FE Coupling: AI Accelerated Physics Modeling
- arxiv url: http://arxiv.org/abs/2504.11383v4
- Date: Mon, 11 Aug 2025 04:55:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 16:55:52.470262
- Title: Time Marching Neural Operator FE Coupling: AI Accelerated Physics Modeling
- Title(参考訳): 時間的マーキング ニューラル演算子FE結合:AIによる加速物理モデリング
- Authors: Wei Wang, Maryam Hakimzadeh, Haihui Ruan, Somdatta Goswami,
- Abstract要約: 本研究は、物理インフォームド・ディープ・オペレーター・ネットワークをドメイン分解によりFEMと統合する新しいハイブリッド・フレームワークを導入する。
動的システムの課題に対処するため、DeepONetに直接タイムステッピングスキームを組み込み、長期エラーの伝搬を大幅に低減する。
提案手法は, 従来手法に比べて収束率を最大20%向上させるとともに, 誤差マージンが3%未満の解の忠実度を保ちながら, 収束率の高速化を図っている。
- 参考スコア(独自算出の注目度): 3.0635300721402228
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerical solvers for PDEs often struggle to balance computational cost with accuracy, especially in multiscale and time-dependent systems. Neural operators offer a promising way to accelerate simulations, but their practical deployment is hindered by several challenges: they typically require large volumes of training data generated from high-fidelity solvers, tend to accumulate errors over time in dynamical settings, and often exhibit poor generalization in multiphysics scenarios. This work introduces a novel hybrid framework that integrates physics-informed deep operator network with FEM through domain decomposition and leverages numerical analysis for time marching. Our innovation lies in efficient coupling FE and DeepONet subdomains via a Schwarz method, expecting to solve complex and nonlinear regions by a pretrained DeepONet, while the remainder is handled by conventional FE. To address the challenges of dynamic systems, we embed a time stepping scheme directly into the DeepONet, substantially reducing long-term error propagation. Furthermore, an adaptive subdomain evolution strategy enables the ML-resolved region to expand dynamically, capturing fine-scale features without remeshing. Our framework shows accelerated convergence rates (up to 20% improvement in convergence rates compared to conventional FE coupling approaches) while preserving solution fidelity with error margins consistently below 3%. Our study shows that our proposed hybrid solver: (1) reduces computational costs by eliminating fine mesh requirements, (2) mitigates error accumulation in time-dependent simulations, and (3) enables automatic adaptation to evolving physical phenomena. This work establishes a new paradigm for coupling state of the art physics based and machine learning solvers in a unified framework, offering a robust, reliable, and scalable pathway for high fidelity multiscale simulations.
- Abstract(参考訳): PDEの数値解法はしばしば計算コストと精度のバランスをとるのに苦労する。
ニューラルネットワークオペレータは、シミュレーションを加速する有望な方法を提供するが、その実践的な展開は、いくつかの課題によって妨げられている。
本研究では,物理インフォームド・ディープ・オペレータ・ネットワークとFEMを統合した新しいハイブリッド・フレームワークを提案する。
我々の革新は、Schwarz法によるFEとDeepONetサブドメインの効率的な結合であり、事前訓練されたDeepONetによって複雑な領域と非線形領域を解決し、残りの領域は従来のFEによって処理される。
動的システムの課題に対処するため、DeepONetに直接タイムステッピングスキームを組み込み、長期エラーの伝搬を大幅に低減する。
さらに、適応的なサブドメイン進化戦略により、ML解決された領域は動的に拡張され、リメッシングなしで微細な特徴をキャプチャできる。
提案手法は, 従来手法に比べて収束率を最大20%向上させるとともに, 誤差マージンが3%未満の解の忠実度を保ちながら, 収束率の高速化を図っている。
提案手法は,(1)メッシュの微細化による計算コストの削減,(2)時間依存シミュレーションにおける誤差蓄積の軽減,(3)物理現象の自動適応などである。
この研究は、最先端の物理ベースと機械学習ソルバを統一されたフレームワークで結合する新しいパラダイムを確立し、高忠実度マルチスケールシミュレーションのための堅牢で信頼性がありスケーラブルな経路を提供する。
関連論文リスト
- PhysicsCorrect: A Training-Free Approach for Stable Neural PDE Simulations [4.7903561901859355]
予測ステップ毎にPDE整合性を強制する,トレーニング不要な修正フレームワークであるNyberCorrectを提案する。
私たちの重要なイノベーションは、オフラインのウォームアップフェーズでJacobianとその擬似逆をプリ計算する効率的なキャッシュ戦略です。
3つの代表的なPDEシステムにおいて、物理コレクトは予測誤差を最大100倍に削減し、無視可能な推論時間を加算する。
論文 参考訳(メタデータ) (2025-07-03T01:22:57Z) - Implicit Neural Differential Model for Spatiotemporal Dynamics [5.1854032131971195]
In-PiNDiffは、安定時間力学のための新しい暗黙の物理積分型ニューラル微分可能解法である。
深い平衡モデルにインスパイアされたIm-PiNDiffは、暗黙の固定点層を用いて状態を前進させ、堅牢な長期シミュレーションを可能にする。
Im-PiNDiffは優れた予測性能、数値安定性の向上、メモリとコストの大幅な削減を実現している。
論文 参考訳(メタデータ) (2025-04-03T04:07:18Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
ガウス過程状態空間モデル(GPSSM)は動的システムのモデリングのための強力なフレームワークとして登場した。
本稿では,これらの制約に対処するため,効率的に変換されたガウス過程状態空間モデル(ETGPSSM)を提案する。
提案手法は,単一共有ガウス過程(GP)と正規化フローとベイズニューラルネットワークを組み合わせることで,複雑な高次元状態遷移の効率的なモデリングを可能にする。
論文 参考訳(メタデータ) (2025-03-24T03:19:45Z) - Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models [57.45019514036948]
MAPF(Multi-Agent Path Finding)は、ロボット工学における基本的な問題である。
連続空間におけるMAPFの拡散モデルと制約付き最適化を統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-12-23T21:27:19Z) - Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)によって支配される力学系のモデリングにおいて大きな進歩を遂げた。
本稿では,多種多様なPDE構成を効果的に一般化する物理インフォームドニューラルPDE解法PIDOを提案する。
PIDOは1次元合成方程式と2次元ナビエ・ストークス方程式を含む様々なベンチマークで検証する。
論文 参考訳(メタデータ) (2024-11-28T13:16:20Z) - Non-overlapping, Schwarz-type Domain Decomposition Method for Physics and Equality Constrained Artificial Neural Networks [0.24578723416255746]
一般化されたインタフェース条件を持つ非重複型シュワルツ型領域分解法を提案する。
提案手法は,各サブドメイン内の物理と等価性制約付き人工ニューラルネットワーク(PECANN)を用いている。
ドメイン分解法では、ポアソン方程式とヘルムホルツ方程式の両方の解を学ぶことができる。
論文 参考訳(メタデータ) (2024-09-20T16:48:55Z) - A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations [2.7755345520127936]
非定常・非線形偏微分方程式(PDE)を正確にモデル化するためのドメイン分割型ディープラーニング(DL)フレームワークCoMLSimを提案する。
このフレームワークは、(a)畳み込みニューラルネットワーク(CNN)ベースのオートエンコーダアーキテクチャと(b)完全に接続された層で構成される自己回帰モデルという、2つの重要なコンポーネントで構成されている。
論文 参考訳(メタデータ) (2024-08-26T17:50:47Z) - Neural-Integrated Meshfree (NIM) Method: A differentiable
programming-based hybrid solver for computational mechanics [1.7132914341329852]
本稿では、計算力学の分野における微分可能なプログラミングに基づくハイブリッドメッシュフリーアプローチである、ニューラル積分メッシュフリー(NIM)手法を提案する。
NIMは、従来の物理ベースのメッシュフリーな離散化技術とディープラーニングアーキテクチャをシームレスに統合する。
NIM フレームワークでは,強い形式ベース NIM (S-NIM) と局所変動形式ベース NIM (V-NIM) の2つの真のメッシュフリーな解法を提案する。
論文 参考訳(メタデータ) (2023-11-21T17:57:12Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Convergence of mean-field Langevin dynamics: Time and space
discretization, stochastic gradient, and variance reduction [49.66486092259376]
平均場ランゲヴィンダイナミクス(英: mean-field Langevin dynamics、MFLD)は、分布依存のドリフトを含むランゲヴィン力学の非線形一般化である。
近年の研究では、MFLDは測度空間で機能するエントロピー規則化された凸関数を地球規模で最小化することが示されている。
有限粒子近似,時間分散,勾配近似による誤差を考慮し,MFLDのカオスの均一時間伝播を示す枠組みを提供する。
論文 参考訳(メタデータ) (2023-06-12T16:28:11Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Multilayer Perceptron Based Stress Evolution Analysis under DC Current
Stressing for Multi-segment Wires [8.115870370527324]
エレクトロマイグレーション(EM)は、超大規模統合(VLSI)システムの信頼性解析における主要な関心事の一つである。
従来の手法はしばしば十分に正確ではないため、特に高度な技術ノードにおいて、望ましくない過設計につながる。
本稿では,多層パーセプトロン(MLP)を用いて,空核形成フェーズにおける相互接続木間の応力変化を計算する手法を提案する。
論文 参考訳(メタデータ) (2022-05-17T07:38:20Z) - Interfacing Finite Elements with Deep Neural Operators for Fast
Multiscale Modeling of Mechanics Problems [4.280301926296439]
本研究では,機械学習を用いたマルチスケールモデリングのアイデアを探求し,高コストソルバの効率的なサロゲートとしてニューラル演算子DeepONetを用いる。
DeepONetは、きめ細かい解法から取得したデータを使って、基礎とおそらく未知のスケールのダイナミクスを学習してオフラインでトレーニングされている。
精度とスピードアップを評価するための様々なベンチマークを提示し、特に時間依存問題に対する結合アルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-25T20:46:08Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
本稿では,この目的関数の定式化方法が,PINNアプローチにおける厳密な制約の源であることを示す。
本稿では,逆問題と前方問題の両方に対処可能な多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-30T05:55:35Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。