論文の概要: $γ(3,4)$ `Attention' in Cognitive Agents: Ontology-Free Knowledge Representations With Promise Theoretic Semantics
- arxiv url: http://arxiv.org/abs/2512.19084v1
- Date: Mon, 22 Dec 2025 06:48:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-23 18:54:32.643554
- Title: $γ(3,4)$ `Attention' in Cognitive Agents: Ontology-Free Knowledge Representations With Promise Theoretic Semantics
- Title(参考訳): $γ(3,4)$ `Attention' in Cognitive Agents: Ontology-Free Knowledge Representations with Promise Theoretic Semantics
- Authors: Mark Burgess,
- Abstract要約: セマンティック・ダイナミックス・オブ・アテンション」は、自律エージェントのために開発された約束理論の概念と密接に関連している。
ベクトル化された機械学習と知識グラフの表現の間にブリッジを確立することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The semantics and dynamics of `attention' are closely related to promise theoretic notions developed for autonomous agents and can thus easily be written down in promise framework. In this way one may establish a bridge between vectorized Machine Learning and Knowledge Graph representations without relying on language models implicitly. Our expectations for knowledge presume a degree of statistical stability, i.e. average invariance under repeated observation, or `trust' in the data. Both learning networks and knowledge graph representations can meaningfully coexist to preserve different aspects of data. While vectorized data are useful for probabilistic estimation, graphs preserve the intentionality of the source even under data fractionation. Using a Semantic Spacetime $γ(3,4)$ graph, one avoids complex ontologies in favour of classification of features by their roles in semantic processes. The latter favours an approach to reasoning under conditions of uncertainty. Appropriate attention to causal boundary conditions may lead to orders of magnitude compression of data required for such context determination, as required in the contexts of autonomous robotics, defence deployments, and ad hoc emergency services.
- Abstract(参考訳): アテンション」の意味論とダイナミクスは、自律エージェントのために開発された約束理論の概念と密接に関連しており、約束の枠組みで簡単に記述できる。
このようにして、言語モデルを暗黙的に依存することなく、ベクトル化された機械学習と知識グラフの表現の間の橋渡しを確立することができる。
知識に対する我々の期待は、統計的な安定性、すなわち繰り返し観測される平均的不変性、あるいはデータの「信頼」の程度を推定する。
学習ネットワークと知識グラフ表現の両方は、データの異なる側面を保存するために有意義に共存することができる。
ベクトル化されたデータは確率的推定に有用であるが、グラフはデータ分数化の下でもソースの意図性を保持する。
セマンティック時空の$γ(3,4)$グラフを用いて、意味過程におけるそれらの役割による特徴の分類を支持する複雑なオントロジーを避ける。
後者は不確実性の条件下での推論へのアプローチを好んでいる。
因果的境界条件への適切な注意は、自律ロボット工学、防衛展開、およびアドホック緊急サービスのコンテキストで必要とされるように、そのような文脈決定に必要なデータの桁違いの圧縮につながる可能性がある。
関連論文リスト
- Topology Identification and Inference over Graphs [61.06365536861156]
グラフ上で進化するプロセスのトポロジの同定と推論は、脳、輸送、金融、電力、および社会的および情報ネットワークを含むタイムリーな応用に現れる。
本章では,多次元データに対するグラフトポロジ同定と統計的推測手法の概要について述べる。
論文 参考訳(メタデータ) (2025-12-11T00:47:09Z) - Two Birds with One Stone: Enhancing Uncertainty Quantification and Interpretability with Graph Functional Neural Process [27.760002432327962]
グラフニューラルネットワーク(GNN)は、グラフデータに強力なツールである。
しかし、それらの予測は誤校正され、解釈性に欠ける。
本稿では,新しい不確実性と解釈可能なグラフ分類モデルを提案する。
論文 参考訳(メタデータ) (2025-08-23T17:48:05Z) - Graph Counterfactual Explainable AI via Latent Space Traversal [4.337339380445765]
反実的な説明は、分配の代替入力の「アレスト」を見つけることによって予測を説明することを目的としている。
本稿では, 識別可能なブラックボックスグラフ分類器に対して, 反実的説明を生成する手法を提案する。
我々は3つのグラフデータセットに対するアプローチを実証的に検証し、我々のモデルはベースラインよりも一貫してハイパフォーマンスで堅牢であることを示した。
論文 参考訳(メタデータ) (2025-01-15T15:04:10Z) - Topological Interpretability for Deep-Learning [0.30806551485143496]
ディープラーニング(DL)モデルは、予測の確実性を定量化できない。
本研究は,臨床および非臨床のテキストに基づいて訓練された2つのDL分類モデルにおいて,特徴を推測する手法を提案する。
論文 参考訳(メタデータ) (2023-05-15T13:38:13Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic
Communication [85.06664206117088]
6Gネットワークはデータ転送のセマンティクスと有効性(エンドユーザ)を考慮する必要がある。
観測データの背後にある因果構造を学習するための柱としてNeSy AIが提案されている。
GFlowNetは、無線システムにおいて初めて活用され、データを生成する確率構造を学ぶ。
論文 参考訳(メタデータ) (2022-05-22T07:11:57Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Leveraging Unlabeled Data for Entity-Relation Extraction through
Probabilistic Constraint Satisfaction [54.06292969184476]
シンボリックドメイン知識の存在下でのエンティティ関係抽出の問題を研究する。
本手法では,論理文の正確な意味を捉える意味的損失を用いる。
低データ体制に焦点をあてて、セマンティックな損失がベースラインをはるかに上回ることを示す。
論文 参考訳(メタデータ) (2021-03-20T00:16:29Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - Self-Supervised Relational Reasoning for Representation Learning [5.076419064097733]
自己教師型学習では、ラベルのないデータに対して代替ターゲットを定義することにより、代理目的を達成することを課題とする。
本稿では,学習者が無ラベルデータに暗黙的な情報から信号をブートストラップできる,新たな自己教師型関係推論法を提案する。
提案手法は,標準データセット,プロトコル,バックボーンを用いて,厳密な実験手順に従って評価する。
論文 参考訳(メタデータ) (2020-06-10T14:24:25Z) - Scenario-Transferable Semantic Graph Reasoning for Interaction-Aware
Probabilistic Prediction [29.623692599892365]
交通参加者の行動の正確な予測は、自動運転車にとって必須の能力である。
本稿では, セマンティクスとドメイン知識を活かして, 様々な運転環境に対する新しい汎用表現を提案する。
論文 参考訳(メタデータ) (2020-04-07T00:34:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。