論文の概要: An Agentic Framework for Autonomous Materials Computation
- arxiv url: http://arxiv.org/abs/2512.19458v1
- Date: Mon, 22 Dec 2025 15:03:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-23 18:54:32.799769
- Title: An Agentic Framework for Autonomous Materials Computation
- Title(参考訳): 自律型材料計算のためのエージェント・フレームワーク
- Authors: Zeyu Xia, Jinzhe Ma, Congjie Zheng, Shufei Zhang, Yuqiang Li, Hang Su, P. Hu, Changshui Zhang, Xingao Gong, Wanli Ouyang, Lei Bai, Dongzhan Zhou, Mao Su,
- Abstract要約: 大規模言語モデル(LLM)は、科学的発見を加速するための強力なツールとして登場した。
近年の進歩はLLMをエージェントフレームワークに統合し、複雑な科学実験のための検索、推論、ツールの使用を可能にしている。
本稿では,第一原理計算の信頼性向上を目的としたドメイン特化エージェントを提案する。
- 参考スコア(独自算出の注目度): 70.24472585135929
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have emerged as powerful tools for accelerating scientific discovery, yet their static knowledge and hallucination issues hinder autonomous research applications. Recent advances integrate LLMs into agentic frameworks, enabling retrieval, reasoning, and tool use for complex scientific workflows. Here, we present a domain-specialized agent designed for reliable automation of first-principles materials computations. By embedding domain expertise, the agent ensures physically coherent multi-step workflows and consistently selects convergent, well-posed parameters, thereby enabling reliable end-to-end computational execution. A new benchmark of diverse computational tasks demonstrates that our system significantly outperforms standalone LLMs in both accuracy and robustness. This work establishes a verifiable foundation for autonomous computational experimentation and represents a key step toward fully automated scientific discovery.
- Abstract(参考訳): 大きな言語モデル(LLM)は科学的発見を加速するための強力なツールとして登場したが、その静的知識と幻覚は自律的な研究を妨げている。
近年の進歩はLLMをエージェントフレームワークに統合し、複雑な科学ワークフローのための検索、推論、ツールの使用を可能にしている。
本稿では,第一原理計算の信頼性向上を目的としたドメイン特化エージェントを提案する。
ドメインの専門知識を埋め込むことで、エージェントは物理的に一貫性のある多段階のワークフローを保証し、一貫性のあるパラメータを一貫して選択することで、信頼性の高いエンドツーエンドの計算実行を可能にします。
多様な計算タスクのベンチマークにより、我々のシステムは、精度とロバスト性の両方でスタンドアロンのLLMを著しく上回っていることが示された。
この研究は、自律的な計算実験のための検証可能な基盤を確立し、完全に自動化された科学的発見に向けた重要なステップを示す。
関連論文リスト
- SelfAI: Building a Self-Training AI System with LLM Agents [79.10991818561907]
SelfAIは、高レベルの研究目的を標準化された実験構成に変換するためのUser Agentを組み合わせた、一般的なマルチエージェントプラットフォームである。
実験マネージャは、連続的なフィードバックのための構造化知識ベースを維持しながら、異種ハードウェアをまたいだ並列かつフォールトトレラントなトレーニングを編成する。
回帰、コンピュータビジョン、科学計算、医用画像、薬物発見ベンチマークなどを通じて、SelfAIは一貫して高いパフォーマンスを達成し、冗長な試行を減らしている。
論文 参考訳(メタデータ) (2025-11-29T09:18:39Z) - AutoLabs: Cognitive Multi-Agent Systems with Self-Correction for Autonomous Chemical Experimentation [0.10999592665107412]
AutoLabsは、自然言語命令を自動で実行可能なプロトコルに変換するように設計された、自己修正型マルチエージェントアーキテクチャである。
複雑化に関する5つのベンチマーク実験を特徴とする総合評価フレームワークを提案する。
以上の結果から,エージェント推論能力が成功の最も重要な要因であることが示唆された。
論文 参考訳(メタデータ) (2025-09-30T01:51:46Z) - xOffense: An AI-driven autonomous penetration testing framework with offensive knowledge-enhanced LLMs and multi agent systems [0.402058998065435]
xOffenseはAI駆動のマルチエージェント浸透テストフレームワークである。
プロセスは、労働集約的で専門家主導のマニュアル作業から、完全に自動化され、マシン実行可能なスケーリングへと、計算インフラストラクチャとシームレスに移行します。
論文 参考訳(メタデータ) (2025-09-16T12:45:45Z) - SFR-DeepResearch: Towards Effective Reinforcement Learning for Autonomously Reasoning Single Agents [93.26456498576181]
本稿では,ディープリサーチのためのネイティブ自律単エージェントモデルの開発に焦点をあてる。
我々の最良の変種であるSFR-DR-20Bは、HumanityのLast Examベンチマークで28.7%に達する。
論文 参考訳(メタデータ) (2025-09-08T02:07:09Z) - GridMind: LLMs-Powered Agents for Power System Analysis and Operations [3.7568206336846663]
本稿では,大規模言語モデル(LLM)を決定論的工学的解法と統合し,対話型科学計算による電力系統解析を実現する多エージェントAIシステムを提案する。
GridMindはワークフローの統合、知識アクセシビリティ、コンテキスト保存、専門家による意思決定支援強化に対処する。
この研究は、エージェントAIを科学計算の実行可能なパラダイムとして確立し、会話インターフェースがアクセシビリティを向上し、重要なエンジニアリングアプリケーションに不可欠な数値的な厳密さを保っていることを実証する。
論文 参考訳(メタデータ) (2025-09-02T16:42:18Z) - An LLM-enabled Multi-Agent Autonomous Mechatronics Design Framework [49.633199780510864]
本研究は, 機械設計, 最適化, エレクトロニクス, ソフトウェア工学の専門知識を統合した多エージェント自律メカトロニクス設計フレームワークを提案する。
このフレームワークは、言語駆動のワークフローを通じて運用され、構造化された人間のフィードバックを組み込んで、現実世界の制約下での堅牢なパフォーマンスを保証する。
完全に機能する自律型容器は、最適化された推進、コスト効率の高い電子機器、高度な制御を備えていた。
論文 参考訳(メタデータ) (2025-04-20T16:57:45Z) - LLM Agents Making Agent Tools [2.5529148902034637]
ツールの使用は、大規模言語モデル(LLM)を、複雑なマルチステップタスクを実行できる強力なエージェントに変えた。
しかし、これらのツールは人間の開発者によって事前に実装されなければならない。
論文をコードで自律的にLLM互換のツールに変換するエージェントフレームワークであるToolMakerを提案する。
論文 参考訳(メタデータ) (2025-02-17T11:44:11Z) - Interpreting and Improving Large Language Models in Arithmetic Calculation [72.19753146621429]
大規模言語モデル(LLM)は、多くのアプリケーションにまたがる顕著な可能性を示している。
本研究では,LLMが計算を行う特定のメカニズムを明らかにする。
LLMの計算性能を高めるために、これらの必須ヘッド/MLPを選択的に微調整する潜在的な利点について検討する。
論文 参考訳(メタデータ) (2024-09-03T07:01:46Z) - Collaboration Dynamics and Reliability Challenges of Multi-Agent LLM Systems in Finite Element Analysis [3.437656066916039]
インターエイジェントダイナミクスが推論の品質と信頼性にどのように影響するかは、まだ不明である。
線形弾性有限要素解析(FEA)のためのAutoGenベースのマルチエージェントフレームワークを用いたこれらのメカニズムについて検討する。
1,120のコントロールされたトライアルから、コラボレーションの有効性は、チームのサイズよりも機能的な相補性に依存することが分かりました。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。