論文の概要: Inverse Autoregressive Flows for Zero Degree Calorimeter fast simulation
- arxiv url: http://arxiv.org/abs/2512.20346v1
- Date: Tue, 23 Dec 2025 13:28:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-24 19:17:49.885773
- Title: Inverse Autoregressive Flows for Zero Degree Calorimeter fast simulation
- Title(参考訳): ゼロDegree Calorimeter高速シミュレーションのための逆自己回帰流
- Authors: Emilia Majerz, Witold Dzwinel, Jacek Kitowski,
- Abstract要約: 物理ベースの機械学習は、従来の科学と現代のデータ駆動技術を融合させる。
CERNにおけるALICE実験におけるZDC(Zero Degree Calorimeter)のシミュレーションを高速化するために,このパラダイムを活用する。
我々の手法は古典的データ駆動モデル同化よりも優れており、ZDCシミュレーション文献の既存のNF実装よりも421倍高速なモデルが得られる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-based machine learning blends traditional science with modern data-driven techniques. Rather than relying exclusively on empirical data or predefined equations, this methodology embeds domain knowledge directly into the learning process, resulting in models that are both more accurate and robust. We leverage this paradigm to accelerate simulations of the Zero Degree Calorimeter (ZDC) of the ALICE experiment at CERN. Our method introduces a novel loss function and an output variability-based scaling mechanism, which enhance the model's capability to accurately represent the spatial distribution and morphology of particle showers in detector outputs while mitigating the influence of rare artefacts on the training. Leveraging Normalizing Flows (NFs) in a teacher-student generative framework, we demonstrate that our approach not only outperforms classic data-driven model assimilation but also yields models that are 421 times faster than existing NF implementations in ZDC simulation literature.
- Abstract(参考訳): 物理ベースの機械学習は、従来の科学と現代のデータ駆動技術を融合させる。
経験的なデータや事前定義された方程式にのみ依存するのではなく、この方法論はドメインの知識を直接学習プロセスに埋め込むことで、より正確で堅牢なモデルを生み出す。
CERNにおけるALICE実験におけるZDC(Zero Degree Calorimeter)のシミュレーションを高速化するために,このパラダイムを活用する。
本手法では, センサ出力における粒子シャワーの空間分布と形態を正確に表現し, 希少な人工物の影響を緩和することのできる, 新規な損失関数と出力可変性に基づくスケーリング機構を導入する。
教師学習型生成フレームワークにおける正規化フロー(NF)の活用は,従来のデータ駆動モデル同化よりも,既存のNF実装よりも421倍高速なモデルが得られることを示す。
関連論文リスト
- Towards Robust Surrogate Models: Benchmarking Machine Learning Approaches to Expediting Phase Field Simulations of Brittle Fracture [0.0]
フラクチャーモデリングのためのML手法のベンチマークと進歩を目的としたPFMシミュレーションに基づくデータセットを提案する。
このデータセットには3つのエネルギー分解方法、2つの境界条件、合計6,000のシミュレーションのための1000のランダムな初期き裂構成が含まれている。
本研究は, フラクチャーメカニクス研究における機械学習の進歩のためのテストベッドとして, このデータセットの有用性を実証するものである。
論文 参考訳(メタデータ) (2025-07-09T19:14:56Z) - Generative Diffusion Models for Fast Simulations of Particle Collisions at CERN [3.2686289567336235]
高エネルギー物理シミュレーションでは、CERNの大型ハドロン衝突型加速器における粒子衝突実験の複雑さの解明に重要な役割を果たしている。
近年の進歩は、最先端の生成機械学習手法として拡散モデルの有効性を強調している。
拡散モデルに基づくALICE実験において,Zero Degree Calorimeter (ZDC) のシミュレーションを行った。
論文 参考訳(メタデータ) (2024-06-05T13:11:53Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
機械学習とベイズ最適実験設計(BOED)を組み合わせた方法論を提案する。
本手法は,大規模スピンダイナミクスシミュレーションのためのニューラルネットワークモデルを用いて,BOEDの正確な分布と実用計算を行う。
数値ベンチマークでは,XPFS実験の誘導,モデルパラメータの予測,実験時間内でのより情報的な測定を行う上で,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-03T06:19:20Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Improving and generalizing flow-based generative models with minibatch
optimal transport [90.01613198337833]
連続正規化フロー(CNF)のための一般条件流整合(CFM)技術を導入する。
CFMは、拡散モデルのフローをトレーニングするために使用されるような安定した回帰目標を特徴としているが、決定論的フローモデルの効率的な推論を好んでいる。
我々の目的の変種は最適輸送CFM (OT-CFM) であり、訓練がより安定し、より高速な推論をもたらすより単純なフローを生成する。
論文 参考訳(メタデータ) (2023-02-01T14:47:17Z) - Using scientific machine learning for experimental bifurcation analysis
of dynamic systems [2.204918347869259]
本研究は、極限サイクルを持つ物理非線形力学系に対する普遍微分方程式(UDE)モデルの訓練に焦点をあてる。
数値シミュレーションによりトレーニングデータを生成する例を考察するとともに,提案するモデリング概念を物理実験に適用する。
ニューラルネットワークとガウス過程の両方を、力学モデルと共に普遍近似器として使用し、UDEモデリングアプローチの正確性と堅牢性を批判的に評価する。
論文 参考訳(メタデータ) (2021-10-22T15:43:03Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
モデル予測だけでなく、その解釈可能性も、プロセスエンジニアに公開する必要があります。
LIMEに基づくモデルに依存しない局所的解釈可能性ソリューションが最近出現し、元の手法が改良された。
本稿では, 燃焼炉で生成する高温金属の温度を推定するデータ駆動型モデルの局所的解釈可能性に関する新しいアプローチ, VAE-LIMEを提案する。
論文 参考訳(メタデータ) (2020-07-15T07:07:07Z) - Macroscopic Traffic Flow Modeling with Physics Regularized Gaussian
Process: A New Insight into Machine Learning Applications [14.164058812512371]
本研究では,古典的トラフィックフローモデルを機械学習アーキテクチャにエンコードする,物理正規化機械学習(PRML)という新しいモデリングフレームワークを提案する。
提案手法の有効性を実証するため,ユタ州I-15高速道路から収集した実世界のデータセットについて実験的検討を行った。
論文 参考訳(メタデータ) (2020-02-06T17:22:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。