論文の概要: AIAuditTrack: A Framework for AI Security system
- arxiv url: http://arxiv.org/abs/2512.20649v1
- Date: Tue, 16 Dec 2025 07:40:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-25 19:43:21.531878
- Title: AIAuditTrack: A Framework for AI Security system
- Title(参考訳): AIAuditTrack: AIセキュリティシステムのためのフレームワーク
- Authors: Zixun Luo, Yuhang Fan, Yufei Li, Youzhi Zhang, Hengyu Lin, Ziqi Wang,
- Abstract要約: AiAuditTrack(AAT)は、AIトラフィックの記録と管理のためのブロックチェーンベースのフレームワークである。
AATは、複雑なマルチエージェント環境において、AI監査、リスク管理、責任帰属に対するスケーラブルで検証可能なソリューションを提供する。
- 参考スコア(独自算出の注目度): 7.390754109180193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid expansion of AI-driven applications powered by large language models has led to a surge in AI interaction data, raising urgent challenges in security, accountability, and risk traceability. This paper presents AiAuditTrack (AAT), a blockchain-based framework for AI usage traffic recording and governance. AAT leverages decentralized identity (DID) and verifiable credentials (VC) to establish trusted and identifiable AI entities, and records inter-entity interaction trajectories on-chain to enable cross-system supervision and auditing. AI entities are modeled as nodes in a dynamic interaction graph, where edges represent time-specific behavioral trajectories. Based on this model, a risk diffusion algorithm is proposed to trace the origin of risky behaviors and propagate early warnings across involved entities. System performance is evaluated using blockchain Transactions Per Second (TPS) metrics, demonstrating the feasibility and stability of AAT under large-scale interaction recording. AAT provides a scalable and verifiable solution for AI auditing, risk management, and responsibility attribution in complex multi-agent environments.
- Abstract(参考訳): 大規模言語モデルを活用したAI駆動アプリケーションの急速な拡張により、AIインタラクションデータが急増し、セキュリティ、説明責任、リスクトレーサビリティの急激な課題が提起された。
本稿では、AIを用いたトラフィック記録とガバナンスのためのブロックチェーンベースのフレームワークであるAiAuditTrack(AAT)を提案する。
AATは、分散ID(DID)と検証資格(VC)を活用して、信頼性と識別可能なAIエンティティを確立し、チェーン上でのエンティティ間インタラクションのトラジェクトリを記録して、システム間の監視と監査を可能にする。
AIエンティティは、エッジが時間固有の行動軌跡を表す動的相互作用グラフのノードとしてモデル化される。
このモデルに基づいてリスク拡散アルゴリズムが提案され、リスク行動の起源を辿り、関連するエンティティ間で早期警告を伝達する。
システムパフォーマンスはブロックチェーントランザクション/秒(TPS)メトリクスを使用して評価され、大規模インタラクション記録におけるAATの実現可能性と安定性を示す。
AATは、複雑なマルチエージェント環境において、AI監査、リスク管理、責任帰属に対するスケーラブルで検証可能なソリューションを提供する。
関連論文リスト
- MAIF: Enforcing AI Trust and Provenance with an Artifact-Centric Agentic Paradigm [0.5495755145898128]
現在のAIシステムは、監査証跡、証明追跡、EU AI Actのような新たな規則で要求される説明可能性に欠ける不透明なデータ構造で運用されている。
動作は一時的なタスクではなく、永続的で検証可能なデータアーティファクトによって駆動される、アーティファクト中心のAIエージェントパラダイムを提案する。
プロダクション対応実装では、超高速ストリーミング(2,720.7MB/s)、最適化されたビデオ処理(1,342MB/s)、エンタープライズレベルのセキュリティが示されている。
論文 参考訳(メタデータ) (2025-11-19T04:10:32Z) - AURA: An Agent Autonomy Risk Assessment Framework [0.0]
AURA(Agent aUtonomy Risk Assessment)はエージェントAIによるリスクの検出、定量化、緩和を目的とした統合されたフレームワークである。
AURAは、1つまたは複数のAIエージェントを同期的に、あるいは非同期に実行するリスクをスコアし、評価し、緩和するインタラクティブなプロセスを提供する。
AURAはエージェントAIの責任と透過性をサポートし、計算リソースのバランスを保ちながら、堅牢なリスク検出と緩和を提供する。
論文 参考訳(メタデータ) (2025-10-17T15:30:29Z) - Co-Investigator AI: The Rise of Agentic AI for Smarter, Trustworthy AML Compliance Narratives [2.7295959384567356]
Co-Investigator AIは、SAR(Suspicious Activity Reports)の作成に最適化されたエージェントフレームワークであり、従来の方法よりも大幅に高速で精度が高い。
我々は、SARの草案作成を効率化し、物語を規制上の期待と一致させ、コンプライアンスチームが高次の分析作業に集中できるようにする能力を示します。
論文 参考訳(メタデータ) (2025-09-10T08:16:04Z) - AutoDrive-R$^2$: Incentivizing Reasoning and Self-Reflection Capacity for VLA Model in Autonomous Driving [37.260140808367716]
本稿では,自律運転システムの推論能力と自己回帰能力を両立させる新しいVLAフレームワークであるAutoDrive-R$2$を提案する。
まず,教師付き微調整のための新しいCoTデータセット nuScenesR$2$-6K を提案する。
次に, グループ相対政策最適化(GRPO)アルゴリズムを用いて, 信頼性の高い滑らかさと現実的な軌道計画を実現する。
論文 参考訳(メタデータ) (2025-09-02T04:32:24Z) - DRIFT: Dynamic Rule-Based Defense with Injection Isolation for Securing LLM Agents [52.92354372596197]
大規模言語モデル(LLM)は、強力な推論と計画能力のため、エージェントシステムの中心となってきています。
この相互作用は、外部ソースからの悪意のある入力がエージェントの振る舞いを誤解させる可能性がある、インジェクション攻撃のリスクも引き起こす。
本稿では,信頼に値するエージェントシステムのための動的ルールベースの分離フレームワークを提案する。
論文 参考訳(メタデータ) (2025-06-13T05:01:09Z) - Expert-in-the-Loop Systems with Cross-Domain and In-Domain Few-Shot Learning for Software Vulnerability Detection [38.083049237330826]
本研究では,CWE(Common Weaknessions)を用いたPythonコードの識別をシミュレーションすることにより,ソフトウェア脆弱性評価におけるLLM(Large Language Models)の利用について検討する。
その結果,ゼロショットプロンプトは性能が低いが,少数ショットプロンプトは分類性能を著しく向上させることがわかった。
モデル信頼性、解釈可能性、敵の堅牢性といった課題は、将来の研究にとって重要な領域のままである。
論文 参考訳(メタデータ) (2025-06-11T18:43:51Z) - An Outlook on the Opportunities and Challenges of Multi-Agent AI Systems [32.48561526824382]
マルチエージェントAIシステム(MAS)は、内部生成モデルに基づいて対話、情報交換、意思決定を行う複数の自律エージェントで構成されている。
本稿では,MASを解析するための形式的枠組みについて概説する。
論文 参考訳(メタデータ) (2025-05-23T22:05:19Z) - Confidence-Regulated Generative Diffusion Models for Reliable AI Agent Migration in Vehicular Metaverses [55.70043755630583]
車両用AIエージェントには、環境認識、意思決定、行動実行能力が与えられている。
本稿では、信頼性の高い車両用AIエージェントマイグレーションフレームワークを提案し、信頼性の高い動的マイグレーションと効率的なリソーススケジューリングを実現する。
我々は,AIエージェントのマイグレーション決定を効率的に生成する信頼性制御型生成拡散モデル(CGDM)を開発した。
論文 参考訳(メタデータ) (2025-05-19T05:04:48Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。