論文の概要: Bridging the AI Trustworthiness Gap between Functions and Norms
- arxiv url: http://arxiv.org/abs/2512.20671v1
- Date: Fri, 19 Dec 2025 14:06:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-25 19:43:21.554576
- Title: Bridging the AI Trustworthiness Gap between Functions and Norms
- Title(参考訳): 関数とノーム間のAI信頼のギャップを埋める
- Authors: Daan Di Scala, Sophie Lathouwers, Michael van Bekkum,
- Abstract要約: 信頼できる人工知能(TAI)は、規制と機能的利益のために勢いを増している。
本稿では,FTAI と NTAI に一致する概念言語を導入することで,橋梁の必要性を論じる。
このようなセマンティック言語は、信頼性の観点からAIシステムを評価するフレームワークとして開発者を支援することができる。
- 参考スコア(独自算出の注目度): 0.764671395172401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trustworthy Artificial Intelligence (TAI) is gaining traction due to regulations and functional benefits. While Functional TAI (FTAI) focuses on how to implement trustworthy systems, Normative TAI (NTAI) focuses on regulations that need to be enforced. However, gaps between FTAI and NTAI remain, making it difficult to assess trustworthiness of AI systems. We argue that a bridge is needed, specifically by introducing a conceptual language which can match FTAI and NTAI. Such a semantic language can assist developers as a framework to assess AI systems in terms of trustworthiness. It can also help stakeholders translate norms and regulations into concrete implementation steps for their systems. In this position paper, we describe the current state-of-the-art and identify the gap between FTAI and NTAI. We will discuss starting points for developing a semantic language and the envisioned effects of it. Finally, we provide key considerations and discuss future actions towards assessment of TAI.
- Abstract(参考訳): 信頼できる人工知能(TAI)は、規制と機能的利益のために勢いを増している。
FTAI(Functional TAI)は信頼できるシステムの実装方法に重点を置いているが、NTAI(Normative TAI)は実施すべき規制に焦点を当てている。
しかし、FTAIとNTAIのギャップは残っており、AIシステムの信頼性を評価することは困難である。
本稿では,FTAI と NTAI に一致する概念言語を導入することで,橋梁の必要性を論じる。
このようなセマンティック言語は、信頼性の観点からAIシステムを評価するフレームワークとして開発者を支援することができる。
また、利害関係者が規範や規則をシステムの具体的な実装手順に変換するのにも役立ちます。
本稿では,現状を述べるとともに,FTAIとNTAIのギャップを同定する。
セマンティック言語を開発するための出発点とその効果について論じる。
最後に、重要事項について考察し、TAIの評価に向けた今後の取組について論じる。
関連論文リスト
- Is Trust Correlated With Explainability in AI? A Meta-Analysis [0.0]
我々は、AI説明可能性と信頼の関係を探るため、既存の文献を網羅的に調査する。
我々の分析では、90の研究データを取り入れた結果、AIシステムの説明可能性と彼らが与える信頼との間に統計的に有意だが適度な正の相関関係が明らかとなった。
この研究は、特に説明責任の促進と、医療や司法などの重要な領域におけるユーザの信頼の促進において、社会技術的に幅広い影響を強調している。
論文 参考訳(メタデータ) (2025-04-16T23:30:55Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - The Journey to Trustworthy AI: Pursuit of Pragmatic Frameworks [0.0]
本稿では,信頼に値する人工知能(TAI)とその様々な定義についてレビューする。
我々は、TAIの代わりにResponsibleやEthical AIといった用語を使うことに反対する。
代わりに、フェアネス、バイアス、リスク、セキュリティ、説明可能性、信頼性といった重要な属性や特性に対処するアプローチを提唱します。
論文 参考訳(メタデータ) (2024-03-19T08:27:04Z) - The Role of Large Language Models in the Recognition of Territorial
Sovereignty: An Analysis of the Construction of Legitimacy [67.44950222243865]
Google MapsやLarge Language Models (LLM)のような技術ツールは、しばしば公平で客観的であると見なされる。
我々は、クリミア、ウェストバンク、トランスニトリアの3つの論争領域の事例を、ウィキペディアの情報と国連の決議に対するChatGPTの反応を比較して強調する。
論文 参考訳(メタデータ) (2023-03-17T08:46:49Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Designing for Responsible Trust in AI Systems: A Communication
Perspective [56.80107647520364]
我々は、MATCHと呼ばれる概念モデルを開発するために、技術に対する信頼に関するコミュニケーション理論と文献から引き出す。
私たちは、AIシステムの能力として透明性とインタラクションを強調します。
我々は、技術クリエーターが使用する適切な方法を特定するのに役立つ要件のチェックリストを提案する。
論文 参考訳(メタデータ) (2022-04-29T00:14:33Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Multisource AI Scorecard Table for System Evaluation [3.74397577716445]
本稿では、AI/機械学習(ML)システムの開発者およびユーザに対して標準チェックリストを提供するマルチソースAIスコアカードテーブル(MAST)について述べる。
本稿では,インテリジェンス・コミュニティ・ディレクティブ(ICD)203で概説されている分析的トレードクラフト標準が,AIシステムの性能を評価するためのフレームワークを提供する方法について考察する。
論文 参考訳(メタデータ) (2021-02-08T03:37:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。