論文の概要: A CNN-Based Malaria Diagnosis from Blood Cell Images with SHAP and LIME Explainability
- arxiv url: http://arxiv.org/abs/2512.22205v1
- Date: Sun, 21 Dec 2025 14:55:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-30 22:37:29.884951
- Title: A CNN-Based Malaria Diagnosis from Blood Cell Images with SHAP and LIME Explainability
- Title(参考訳): SHAP, LIME Explainability を用いた細胞画像からのCNNによるマラリア診断
- Authors: Md. Ismiel Hossen Abir, Awolad Hossain,
- Abstract要約: マラリアは熱帯気候と亜熱帯気候の地域で広く健康上の問題となっている。
顕微鏡的血液スミア分析のような従来の診断法は感度が低く、専門家の判断に依存し、遠隔地では利用できないリソースを必要とする。
本研究では、独自の畳み込みニューラルネットワーク(CNN)を用いた深層学習による血液細胞画像の自動分類手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Malaria remains a prevalent health concern in regions with tropical and subtropical climates. The cause of malaria is the Plasmodium parasite, which is transmitted through the bites of infected female Anopheles mosquitoes. Traditional diagnostic methods, such as microscopic blood smear analysis, are low in sensitivity, depend on expert judgment, and require resources that may not be available in remote settings. To overcome these limitations, this study proposes a deep learning-based approach utilizing a custom Convolutional Neural Network (CNN) to automatically classify blood cell images as parasitized or uninfected. The model achieves an accuracy of 96%, with precision and recall scores exceeding 0.95 for both classes. This study also compares the custom CNN with established deep learning architectures, including ResNet50, VGG16, MobileNetV2, and DenseNet121. To enhance model interpretability, Explainable AI techniques such as SHAP, LIME, and Saliency Maps are applied. The proposed system shows how deep learning can provide quick, accurate and understandable malaria diagnosis, especially in areas with limited resources.
- Abstract(参考訳): マラリアは熱帯気候と亜熱帯気候の地域で広く健康上の問題となっている。
マラリアの原因は寄生虫Plasmodium parasiteであり、感染した雌のアナテレス蚊の噛み跡を通じて伝染する。
顕微鏡的血液スミア分析のような従来の診断法は感度が低く、専門家の判断に依存し、遠隔地では利用できないリソースを必要とする。
これらの制限を克服するため,この研究では,独自の畳み込みニューラルネットワーク(CNN)を用いて,血液のイメージを寄生・無感染として自動的に分類する深層学習アプローチを提案する。
このモデルは精度96%に達し、精度とリコールスコアは両方のクラスで0.95を超えている。
この研究では、カスタムCNNと、ResNet50、VGG16、MobileNetV2、DenseNet121といった既存のディープラーニングアーキテクチャを比較した。
モデル解釈可能性を高めるために、SHAP、LIME、Saliency Mapsなどの説明可能なAI技術が適用される。
提案システムは,特に限られた資源を持つ地域において,ディープラーニングが迅速かつ正確かつ理解可能なマラリア診断を実現する方法を示す。
関連論文リスト
- Malaria Detection from Blood Cell Images Using XceptionNet [1.8311148945110531]
マラリアは、主に雌のアナテレス蚊の噛みつきによって拡散し、しばしば人の死につながる。
十分な専門知識やスキルが不足し、最も重要な手作業による関与が誤った診断を引き起こす可能性がある。
本稿では,血液細胞像から深い内在性特徴を抽出するために,よく実証されたディープネットワークを適用した。
論文 参考訳(メタデータ) (2025-10-22T02:41:01Z) - Leveraging Sparse Annotations for Leukemia Diagnosis on the Large Leukemia Dataset [44.948939549346676]
白血病は世界で10番目に頻繁に診断されるがんであり、がん関連死亡の原因の1つとなっている。
医学画像の深層学習の進歩にもかかわらず、白血病解析には多種多様なマルチタスクデータセットが欠けている。
大規模WBCデータセットと,その属性を用いてWBCを検出する新しい手法を提案する。
論文 参考訳(メタデータ) (2025-04-03T14:04:02Z) - KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation [46.57880203321858]
カルマンフィルタを用いた線形変形型クロスアテンション(LDCA)モジュールを用いた血管セグメンテーションのための新しいネットワーク(KaLDeX)を提案する。
我々のアプローチは、カルマンフィルタ(KF)ベースの線形変形可能な畳み込み(LD)とクロスアテンション(CA)モジュールの2つの重要なコンポーネントに基づいている。
提案手法は,網膜基底画像データセット(DRIVE,CHASE_BD1,STARE)とOCTA-500データセットの3mm,6mmを用いて評価した。
論文 参考訳(メタデータ) (2024-10-28T16:00:42Z) - Analysis of Modern Computer Vision Models for Blood Cell Classification [49.1574468325115]
この研究では、MaxVit、EfficientVit、EfficientNet、EfficientNetV2、MobileNetV3といった最先端アーキテクチャを使用して、迅速かつ正確な結果を得る。
本手法は,従来の手法の速度と精度の懸念に対処するだけでなく,血液学的解析における革新的な深層学習モデルの適用性についても検討する。
論文 参考訳(メタデータ) (2024-06-30T16:49:29Z) - Malaria Cell Detection Using Deep Neural Networks [1.1237179306040028]
マラリアは世界中で最も深刻な公衆衛生上の懸念の1つだ。
血液スミアの顕微鏡検査などの従来の診断法は、労働集約的である。
本研究の目的は, 深層学習によるマラリア感染細胞の自動検出である。
論文 参考訳(メタデータ) (2024-06-28T15:44:55Z) - Computer-aided Diagnosis of Malaria through Transfer Learning using the
ResNet50 Backbone [0.0]
マラリアの原因は寄生虫のプラスモジウム(Plasmodium parasite)である。
本稿では、ResNet50 Deep Neural Networkを用いて、マラリアの細いスミア細胞像を寄生・無感染と分類するための、コンピュータ支援による自動診断手法を提案する。
論文 参考訳(メタデータ) (2023-04-06T08:31:15Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z) - Localization of Malaria Parasites and White Blood Cells in Thick Blood
Smears [5.36646793661301]
本研究はマラリア原虫および白血球(WBCs)の局在と数に対するエンドツーエンドアプローチを提案する。
血液スミア画像のスライスデータセットを用いて,得られたデジタル画像を解析するモデルを構築した。
予備的な結果は、我々のディープラーニングアプローチがマラリア原虫とWBCの数を確実に検出し、返却していることを示している。
論文 参考訳(メタデータ) (2020-12-03T15:14:38Z) - MOSQUITO-NET: A deep learning based CADx system for malaria diagnosis
along with model interpretation using GradCam and class activation maps [9.01199960262149]
マラリアは世界でも最も致命的な病気の1つで、毎年数千人が死亡している。
マラリアの原因となる寄生虫は、科学的にはプラスモジウムと呼ばれ、ヒトの赤血球に感染する。
マラリアの診断には、顕微鏡的血腫の医療従事者による寄生細胞の同定と手動計測が必要である。
論文 参考訳(メタデータ) (2020-06-17T13:00:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。