論文の概要: Improved 3D Gaussian Splatting of Unknown Spacecraft Structure Using Space Environment Illumination Knowledge
- arxiv url: http://arxiv.org/abs/2512.23998v1
- Date: Tue, 30 Dec 2025 05:35:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-01 23:27:28.291773
- Title: Improved 3D Gaussian Splatting of Unknown Spacecraft Structure Using Space Environment Illumination Knowledge
- Title(参考訳): 宇宙環境照明知識を用いた未知の宇宙構造物の3次元ガウス散乱の改良
- Authors: Tae Ha Park, Simone D'Amico,
- Abstract要約: 本研究は、未知のターゲット宇宙船の3次元構造を、宇宙空間で撮影された一連の画像から復元する新しいパイプラインを提案する。
3DGSの学習には静的なシーンが必要である。
トレーニングされた3DGSモデルは、フォトメトリック最適化によるカメラポーズ推定にも使用することができる。
- 参考スコア(独自算出の注目度): 7.2620484413601325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents a novel pipeline to recover the 3D structure of an unknown target spacecraft from a sequence of images captured during Rendezvous and Proximity Operations (RPO) in space. The target's geometry and appearance are represented as a 3D Gaussian Splatting (3DGS) model. However, learning 3DGS requires static scenes, an assumption in contrast to dynamic lighting conditions encountered in spaceborne imagery. The trained 3DGS model can also be used for camera pose estimation through photometric optimization. Therefore, in addition to recovering a geometrically accurate 3DGS model, the photometric accuracy of the rendered images is imperative to downstream pose estimation tasks during the RPO process. This work proposes to incorporate the prior knowledge of the Sun's position, estimated and maintained by the servicer spacecraft, into the training pipeline for improved photometric quality of 3DGS rasterization. Experimental studies demonstrate the effectiveness of the proposed solution, as 3DGS models trained on a sequence of images learn to adapt to rapidly changing illumination conditions in space and reflect global shadowing and self-occlusion.
- Abstract(参考訳): 本研究では、Rendezvous と Proximity Operations (RPO) が宇宙空間で撮影した一連の画像から、未知のターゲット宇宙船の3次元構造を復元する新しいパイプラインを提案する。
ターゲットの形状と外観は3Dガウススプラッティング(3DGS)モデルとして表現される。
しかし、3DGSの学習には静的なシーンが必要である。
トレーニングされた3DGSモデルは、フォトメトリック最適化によるカメラポーズ推定にも使用することができる。
したがって、幾何学的に正確な3DGSモデルの復元に加えて、レンダリングされた画像の測光精度は、RPOプロセス中の下流ポーズ推定タスクに必須である。
この研究は、太陽の位置に関する以前の知識を3DGSラスタ化の光度品質を改善するための訓練パイプラインに組み入れることを提案する。
実験によって提案手法の有効性が実証され, 画像列にトレーニングされた3DGSモデルは, 空間の急速に変化する照明条件に適応し, グローバルシャドーイングと自己閉塞を反映する。
関連論文リスト
- Generalizable and Relightable Gaussian Splatting for Human Novel View Synthesis [49.67420486373202]
GRGSは、多彩な照明条件下での高忠実なヒューマン・ノベル・ビュー・シンセサイザーのための一般的な3Dガウスのフレームワークである。
我々は, 精密深度および表面の正常度を予測するために, 合成依存データに基づいて学習した照明対応幾何微細化(LGR)モジュールを提案する。
論文 参考訳(メタデータ) (2025-05-27T17:59:47Z) - EVolSplat: Efficient Volume-based Gaussian Splatting for Urban View Synthesis [61.1662426227688]
既存のNeRFおよび3DGSベースの手法は、フォトリアリスティックレンダリングを実現する上で有望な結果を示すが、スローでシーンごとの最適化が必要である。
本稿では,都市景観を対象とした効率的な3次元ガウススプレイティングモデルEVolSplatを紹介する。
論文 参考訳(メタデータ) (2025-03-26T02:47:27Z) - GeoSplatting: Towards Geometry Guided Gaussian Splatting for Physically-based Inverse Rendering [69.67264955234494]
GeoSplattingは、3DGSを精密な光輸送モデリングのための明確な幾何学的ガイダンスで拡張する新しいアプローチである。
最適化可能なメッシュから表面積の3DGSを微分的に構築することにより、明確に定義されたメッシュ正規と不透明なメッシュ表面を利用する。
この強化により、3DGSの効率性と高品質なレンダリング能力を保ちながら、正確な材料分解が保証される。
論文 参考訳(メタデータ) (2024-10-31T17:57:07Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization [1.4466437171584356]
軽量なXFeat特徴抽出器から高密度かつ堅牢なキーポイント記述器を3DGSに統合する2段階の手順を提案する。
第2段階では、レンダリングベースの光度ワープ損失を最小限に抑え、初期ポーズ推定を洗練させる。
広く使われている屋内および屋外データセットのベンチマークは、最近のニューラルレンダリングベースのローカライゼーション手法よりも改善されていることを示している。
論文 参考訳(メタデータ) (2024-09-24T23:18:32Z) - Visual SLAM with 3D Gaussian Primitives and Depth Priors Enabling Novel View Synthesis [11.236094544193605]
従来の幾何学に基づくSLAMシステムは、密度の高い3D再構成機能を持たない。
本稿では,新しいビュー合成技術である3次元ガウススプラッティングを組み込んだリアルタイムRGB-D SLAMシステムを提案する。
論文 参考訳(メタデータ) (2024-08-10T21:23:08Z) - Wild-GS: Real-Time Novel View Synthesis from Unconstrained Photo Collections [30.321151430263946]
本稿では、制約のない写真コレクションに最適化された3DGSの革新的な適応であるWild-GSについて述べる。
Wild-GSは、それぞれの3Dガウスの出現を、その固有の材料特性、大域照明と画像当たりのカメラ特性、反射率の点レベルの局所的ばらつきによって決定する。
この斬新な設計は、参照ビューの高周波詳細外観を3次元空間に効果的に転送し、トレーニングプロセスを大幅に高速化する。
論文 参考訳(メタデータ) (2024-06-14T19:06:07Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS)は近年,高画質の新規ビュー合成と高速レンダリングを実現し,放射界再構成に革命をもたらした。
多視点画像から幾何学的精度の高い放射場をモデル化・再構成するための新しいアプローチである2DGS(2D Gaussian Splatting)を提案する。
競合する外観品質、高速トレーニング速度、リアルタイムレンダリングを維持しつつ、ノイズフリーかつ詳細な幾何学的再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-26T17:21:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。