論文の概要: Noise-Robust Tiny Object Localization with Flows
- arxiv url: http://arxiv.org/abs/2601.00617v1
- Date: Fri, 02 Jan 2026 09:16:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-05 15:04:33.544483
- Title: Noise-Robust Tiny Object Localization with Flows
- Title(参考訳): 流れを伴う騒音-腐食性Tiny物体の定位
- Authors: Huixin Sun, Linlin Yang, Ronyu Chen, Kerui Gu, Baochang Zhang, Angela Yao, Xianbin Cao,
- Abstract要約: フレキシブルなエラーモデリングと不確実性誘導最適化に正規化フローを活用するノイズローバストローカライゼーションフレームワークを提案する。
本手法は,フローベース誤差モデルを用いて,複雑な非ガウス予測分布を抽出し,ノイズの多い監視下で頑健な学習を可能にする。
不確実性を考慮した勾配変調機構は、トレーニングを安定化しながら過度な適合を緩和し、高不確実でノイズの強いサンプルからの学習をさらに抑制する。
- 参考スコア(独自算出の注目度): 63.60972031108944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite significant advances in generic object detection, a persistent performance gap remains for tiny objects compared to normal-scale objects. We demonstrate that tiny objects are highly sensitive to annotation noise, where optimizing strict localization objectives risks noise overfitting. To address this, we propose Tiny Object Localization with Flows (TOLF), a noise-robust localization framework leveraging normalizing flows for flexible error modeling and uncertainty-guided optimization. Our method captures complex, non-Gaussian prediction distributions through flow-based error modeling, enabling robust learning under noisy supervision. An uncertainty-aware gradient modulation mechanism further suppresses learning from high-uncertainty, noise-prone samples, mitigating overfitting while stabilizing training. Extensive experiments across three datasets validate our approach's effectiveness. Especially, TOLF boosts the DINO baseline by 1.2% AP on the AI-TOD dataset.
- Abstract(参考訳): ジェネリックオブジェクト検出の大幅な進歩にもかかわらず、通常のオブジェクトに比べて小さなオブジェクトに対して持続的なパフォーマンスギャップは残る。
狭小物体がアノテーションノイズに非常に敏感であることを示し、厳密な局所化の目的を最適化することで騒音過多のリスクが生じることを示した。
そこで本研究では,正規化フローを利用してフレキシブルなエラーモデリングと不確実性誘導最適化を行うノイズローバストな局所化フレームワークであるTiny Object Localization with Flows (TOLF)を提案する。
本手法は,フローベース誤差モデルを用いて,複雑な非ガウス予測分布を抽出し,ノイズの多い監視下で頑健な学習を可能にする。
不確実性を考慮した勾配変調機構は、トレーニングを安定化しながら過度な適合を緩和し、高不確実でノイズの強いサンプルからの学習をさらに抑制する。
3つのデータセットにわたる大規模な実験は、我々のアプローチの有効性を検証する。
特にTOLFは、AI-TODデータセット上でDINOベースラインを1.2%APアップする。
関連論文リスト
- Stable Neighbor Denoising for Source-free Domain Adaptive Segmentation [91.83820250747935]
擬似ラベルノイズは主に不安定なサンプルに含まれており、ほとんどのピクセルの予測は自己学習中に大きく変化する。
我々は, 安定・不安定な試料を効果的に発見する, SND(Stable Neighbor Denoising)アプローチを導入する。
SNDは、様々なSFUDAセマンティックセグメンテーション設定における最先端メソッドよりも一貫して優れている。
論文 参考訳(メタデータ) (2024-06-10T21:44:52Z) - Training More Robust Classification Model via Discriminative Loss and Gaussian Noise Injection [7.535952418691443]
本稿では,クラス内コンパクト性を明示する最小層に適用した損失関数を提案する。
また、ノイズの多いデータクラスタをクリーンなクラスタに近づける、クラスワイズな機能アライメント機構を提案する。
提案手法は, クリーンなデータに対して高い精度を維持しながら, 各種摂動に対するモデルロバスト性を大幅に強化する。
論文 参考訳(メタデータ) (2024-05-28T18:10:45Z) - ROPO: Robust Preference Optimization for Large Language Models [59.10763211091664]
外部モデルの助けを借りずにノイズ耐性とノイズサンプルのフィルタリングを統合する反復アライメント手法を提案する。
Mistral-7BとLlama-2-7Bで広く使われている3つのデータセットの実験では、ROPOが既存の嗜好アライメント法を大幅に上回っていることが示されている。
論文 参考訳(メタデータ) (2024-04-05T13:58:51Z) - Iso-Diffusion: Improving Diffusion Probabilistic Models Using the Isotropy of the Additive Gaussian Noise [0.0]
本稿では、DDPMの忠実度を高めるために、目的関数の制約として添加音の等方性を利用する方法を示す。
我々のアプローチは単純であり、DDPMの変種にも適用できる。
論文 参考訳(メタデータ) (2024-03-25T14:05:52Z) - Impact of Noisy Supervision in Foundation Model Learning [91.56591923244943]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Dynamic Addition of Noise in a Diffusion Model for Anomaly Detection [2.209921757303168]
拡散モデルは、名目データ分布を捕捉し、再構成を通して異常を識別することで、異常検出に有用な応用を見出した。
それらの利点にもかかわらず、彼らは様々なスケールの異常、特に欠落した成分全体のような大きな異常をローカライズするのに苦労している。
本稿では,従来の暗黙的条件付け手法であるメングらを拡張し,拡散モデルの能力を高める新しい枠組みを提案する。
2022年は3つの重要な意味を持つ。
論文 参考訳(メタデータ) (2024-01-09T09:57:38Z) - Dynamic Tiling: A Model-Agnostic, Adaptive, Scalable, and
Inference-Data-Centric Approach for Efficient and Accurate Small Object
Detection [3.8332251841430423]
Dynamic Tilingは、小さなオブジェクト検出のためのモデルに依存しない、適応的でスケーラブルなアプローチである。
本手法は, フラグメントオブジェクトを効果的に解決し, 検出精度を向上し, 計算オーバーヘッドを最小限に抑える。
全体として、Dynamic Tilingは既存のモデルに依存しない一様収穫法よりも優れている。
論文 参考訳(メタデータ) (2023-09-20T05:25:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。