論文の概要: Almost Clinical: Linguistic properties of synthetic electronic health records
- arxiv url: http://arxiv.org/abs/2601.01171v1
- Date: Sat, 03 Jan 2026 12:22:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-06 16:25:22.063309
- Title: Almost Clinical: Linguistic properties of synthetic electronic health records
- Title(参考訳): ほぼ臨床:合成電子健康記録の言語学的特性
- Authors: Serge Sharoff, John Baker, David Francis Hunt, Alan Simpson,
- Abstract要約: 本研究は、精神保健分野における合成電子健康記録の言語学的・臨床的適合性を評価するものである。
合成コーパスを作成するための根拠と方法論について述べる。
我々は,4つの臨床分野のエージェンシー,モダリティ,情報フローを評価する。
- 参考スコア(独自算出の注目度): 1.3749490831384268
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study evaluates the linguistic and clinical suitability of synthetic electronic health records (EHRs) in the field of mental health. First, we describe the rationale and the methodology for creating the synthetic corpus. Second, we assess agency, modality, and information flow across four clinical genres (Assessments, Correspondence, Referrals and Care plans) to understand how LLMs grammatically construct medical authority and patient agency through linguistic choices. While LLMs produce coherent, terminology-appropriate texts that approximate clinical practice, systematic divergences remain, including registerial shifts, insufficient clinical specificity, and inaccuracies in medication use and diagnostic procedures.
- Abstract(参考訳): 本研究では,精神保健分野における人工電子健康記録(EHR)の言語学的,臨床的適合性について検討した。
まず,合成コーパス作成の根拠と方法論について述べる。
第2に, 4つの臨床分野(アセスメント, 対応, リファラル, ケアプラン)にまたがるエージェンシー, モダリティ, 情報フローを評価し, LLMが言語的選択を通じて, 医療機関や患者機関を文法的に構築する方法を理解する。
LLMは、臨床実践を近似するコヒーレントで用語に適したテキストを生成するが、登録のシフト、臨床特異性の不足、薬物使用や診断手順の不正確さなど、系統的な違いが残っている。
関連論文リスト
- ClinDEF: A Dynamic Evaluation Framework for Large Language Models in Clinical Reasoning [58.01333341218153]
ClinDEF(ClinDEF)は, LLMにおける臨床推論をシミュレートされた診断対話を用いて評価する動的フレームワークである。
本手法は, 患者を発症し, LLMをベースとした医師と自動患者エージェントとのマルチターンインタラクションを容易にする。
実験により、ClinDEFは最先端のLSMにおいて重要な臨床推論ギャップを効果的に露呈することが示された。
論文 参考訳(メタデータ) (2025-12-29T12:58:58Z) - Simulating Viva Voce Examinations to Evaluate Clinical Reasoning in Large Language Models [51.91760712805404]
大規模言語モデル(LLM)におけるシーケンシャルな臨床推論を評価するためのベンチマークであるVivaBenchを紹介する。
本データセットは,医療訓練における(口頭)検査をシミュレートする対話的シナリオとして構成された1762名の医師による臨床ヴィグネットから構成される。
本分析では,臨床における認知的誤りを反映するいくつかの障害モードを同定した。
論文 参考訳(メタデータ) (2025-10-11T16:24:35Z) - Retrieval-Augmented Framework for LLM-Based Clinical Decision Support [0.19999259391104388]
本稿では,大言語モデル(LLM)を用いた臨床意思決定支援システムを提案する。
このフレームワークは自然言語処理と構造化された臨床入力を統合し、文脈に関連のあるレコメンデーションを生成する。
本稿では,表現表現のアライメントや生成戦略など,システムの技術的コンポーネントについて概説する。
論文 参考訳(メタデータ) (2025-10-01T18:45:25Z) - ClinLinker: Medical Entity Linking of Clinical Concept Mentions in Spanish [39.81302995670643]
本研究は、医療エンティティリンクのための2相パイプラインを用いた新しいアプローチであるClinLinkerを提示する。
SapBERTベースのバイエンコーダに基づいており、その後クロスエンコーダで再ランクされ、スペインの医療概念に合わせた対照的な学習戦略に従って訓練されている。
論文 参考訳(メタデータ) (2024-04-09T15:04:27Z) - Cross-Lingual Knowledge Transfer for Clinical Phenotyping [55.92262310716537]
本稿では,英語を使わないクリニックに対して,このタスクを実行するための言語間知識伝達戦略について検討する。
ギリシャ語とスペイン語のクリニックに対して,異なる臨床領域のクリニカルノートを活用して,これらの戦略を評価する。
以上の結果から,多言語データを用いることで,臨床表現型モデルが改善され,データの疎度を補うことが可能であることが示唆された。
論文 参考訳(メタデータ) (2022-08-03T08:33:21Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
本稿では,単語の単純化と言語モデリングに基づく医療用テキストの自動作成手法を提案する。
我々は,公開医療文のデータセットペアと,臨床医による簡易化版を用いている。
本手法は,医学フォーラムデータに基づく言語モデルを用いて,文法と本来の意味の両方を保存しながら,より単純な文を生成する。
論文 参考訳(メタデータ) (2021-12-23T16:11:19Z) - Clinical Named Entity Recognition using Contextualized Token
Representations [49.036805795072645]
本稿では,各単語の意味的意味をより正確に把握するために,文脈型単語埋め込み手法を提案する。
言語モデル(C-ELMo)とC-Flair(C-Flair)の2つの深い文脈型言語モデル(C-ELMo)を事前訓練する。
明示的な実験により、静的単語埋め込みとドメインジェネリック言語モデルの両方と比較して、我々のモデルは劇的に改善されている。
論文 参考訳(メタデータ) (2021-06-23T18:12:58Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
我々はMedLaneという名の新しいデータセットを構築し、自動化された臨床言語簡易化手法の開発と評価を支援する。
我々は,人間のアノテーションの手順に従い,最先端のパフォーマンスを実現するDECLAREと呼ばれる新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-12-04T06:09:02Z) - Automated Coding of Under-Studied Medical Concept Domains: Linking
Physical Activity Reports to the International Classification of Functioning,
Disability, and Health [22.196642357767338]
医療概念の多くの領域は、医学テキストの効果的なコーディングを支援するための、十分に発達した用語を欠いている。
本稿では,未研究の医療情報の自動符号化のための自然言語処理(NLP)技術を開発するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-27T20:02:59Z) - Clinical Text Summarization with Syntax-Based Negation and Semantic
Concept Identification [22.556855536939878]
我々は、人間の専門家によるバイオメディカル知識ベースを用いた計算言語学を用いて、解釈可能かつ有意義な臨床テキスト要約を実現する。
本研究の目的は, バイオメディカルオントロジーを意味情報と共に利用し, 言語階層構造, 選挙区木を活かして, 正しい臨床概念とそれに対応する否定情報を同定することである。
論文 参考訳(メタデータ) (2020-02-29T22:15:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。