論文の概要: From Mice to Trains: Amortized Bayesian Inference on Graph Data
- arxiv url: http://arxiv.org/abs/2601.02241v1
- Date: Mon, 05 Jan 2026 16:16:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-06 16:25:23.266464
- Title: From Mice to Trains: Amortized Bayesian Inference on Graph Data
- Title(参考訳): マウスから電車:グラフデータに基づくベイズ推定
- Authors: Svenja Jedhoff, Elizaveta Semenova, Aura Raulo, Anne Meyer, Paul-Christian Bürkner,
- Abstract要約: グラフ構造化データに対する推論には、置換不変で、さまざまなサイズや空間にわたってスケーラブルで、複雑な長距離依存関係をキャプチャできるメソッドが必要である。
ABIは、高速で可能性のない後部推論を可能にするために生成ニューラルネットワークを使用するシミュレーションベースのフレームワークである。
- 参考スコア(独自算出の注目度): 2.809401516758154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphs arise across diverse domains, from biology and chemistry to social and information networks, as well as in transportation and logistics. Inference on graph-structured data requires methods that are permutation-invariant, scalable across varying sizes and sparsities, and capable of capturing complex long-range dependencies, making posterior estimation on graph parameters particularly challenging. Amortized Bayesian Inference (ABI) is a simulation-based framework that employs generative neural networks to enable fast, likelihood-free posterior inference. We adapt ABI to graph data to address these challenges to perform inference on node-, edge-, and graph-level parameters. Our approach couples permutation-invariant graph encoders with flexible neural posterior estimators in a two-module pipeline: a summary network maps attributed graphs to fixed-length representations, and an inference network approximates the posterior over parameters. In this setting, several neural architectures can serve as the summary network. In this work we evaluate multiple architectures and assess their performance on controlled synthetic settings and two real-world domains - biology and logistics - in terms of recovery and calibration.
- Abstract(参考訳): グラフは、生物学や化学、社会や情報ネットワーク、輸送や物流など、さまざまな分野にまたがる。
グラフ構造化データの推論には、置換不変で、さまざまなサイズや空間にわたってスケーラブルで、複雑な長距離依存関係をキャプチャし、グラフパラメータの後方推定を特に困難にする手法が必要である。
ABI(Amortized Bayesian Inference)は、生成ニューラルネットワークを用いて高速で可能性のない後部推論を可能にするシミュレーションベースのフレームワークである。
ABIをグラフデータに適用してこれらの課題に対処し、ノード、エッジ、グラフレベルのパラメータを推論します。
提案手法では,2モジュールのパイプラインにおいて,置換不変グラフエンコーダとフレキシブルニューラルネットワーク後部推定器を結合する:要約ネットワークは属性グラフを固定長表現にマッピングし,推論ネットワークは後部パラメータを近似する。
この設定では、いくつかのニューラルネットワークが要約ネットワークとして機能する。
本研究では,複数のアーキテクチャを評価し,制御された合成セッティングと2つの現実世界ドメイン(生物学と物流)の性能を,回復と校正の観点から評価する。
関連論文リスト
- Topology Identification and Inference over Graphs [61.06365536861156]
グラフ上で進化するプロセスのトポロジの同定と推論は、脳、輸送、金融、電力、および社会的および情報ネットワークを含むタイムリーな応用に現れる。
本章では,多次元データに対するグラフトポロジ同定と統計的推測手法の概要について述べる。
論文 参考訳(メタデータ) (2025-12-11T00:47:09Z) - Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
解析条件後部を解析し,推論精度を向上させるグラフポアソン因子分析法(GPFA)を開発した。
また,GPFAを多層構造に拡張したグラフPoisson gamma belief Network (GPGBN) を用いて,階層的な文書関係を複数の意味レベルで捉える。
本モデルでは,高品質な階層型文書表現を抽出し,様々なグラフ解析タスクにおいて有望な性能を実現する。
論文 参考訳(メタデータ) (2024-10-13T02:22:14Z) - Unitary convolutions for learning on graphs and groups [0.9899763598214121]
我々は、訓練中により安定したより深いネットワークを可能にするユニタリグループ畳み込みについて研究する。
論文の主な焦点はグラフニューラルネットワークであり、ユニタリグラフの畳み込みがオーバー・スムーシングを確実に回避していることを示す。
実験結果から,ベンチマークデータセット上でのユニタリグラフ畳み込みネットワークの競合性能が確認できた。
論文 参考訳(メタデータ) (2024-10-07T21:09:14Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - RAN-GNNs: breaking the capacity limits of graph neural networks [43.66682619000099]
グラフニューラルネットワークは、グラフ上で定義されたデータの学習と分析に対処する問題の中心となっている。
最近の研究では、複数の近隣サイズを同時に考慮し、適応的にそれらを調整する必要があるためです。
ランダムに配線されたアーキテクチャを用いることで、ネットワークの容量を増大させ、よりリッチな表現を得ることができることを示す。
論文 参考訳(メタデータ) (2021-03-29T12:34:36Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z) - Path Integral Based Convolution and Pooling for Graph Neural Networks [12.801534458657592]
グラフの分類と回帰処理のための経路積分に基づくグラフニューラルネットワーク(PAN)を提案する。
PANは、さまざまなサイズと構造を持つ異なるグラフデータ用に調整可能な、汎用的なフレームワークを提供する。
実験結果から,PANは様々なグラフ分類/回帰タスクにおいて最先端の性能を達成することが示された。
論文 参考訳(メタデータ) (2020-06-29T16:20:33Z) - Geom-GCN: Geometric Graph Convolutional Networks [15.783571061254847]
本稿では,この2つの弱点を克服するために,グラフニューラルネットワークのための新しい幾何集約手法を提案する。
提案したアグリゲーションスキームは置換不変であり、ノード埋め込み、構造近傍、二レベルアグリゲーションという3つのモジュールから構成される。
また,このスキームをGeom-GCNと呼ばれるグラフ畳み込みネットワークに実装し,グラフ上でトランスダクティブ学習を行う。
論文 参考訳(メタデータ) (2020-02-13T00:03:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。