論文の概要: Causal Manifold Fairness: Enforcing Geometric Invariance in Representation Learning
- arxiv url: http://arxiv.org/abs/2601.03032v1
- Date: Tue, 06 Jan 2026 14:05:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-07 17:02:12.965037
- Title: Causal Manifold Fairness: Enforcing Geometric Invariance in Representation Learning
- Title(参考訳): 因果的マニフォールドフェアネス:表現学習における幾何学的不変性
- Authors: Vidhi Rathore,
- Abstract要約: 本稿では,因果推論と幾何学的深層学習を橋渡しする新しいフレームワークであるCausal Manifold Fairness(CMF)を紹介する。
デコーダのヤコビアンとヘシアンに制約を課すことにより、CMFは潜在空間の規則が階層群全体にわたって保持されることを保証する。
CMFを合成構造因果モデル (SCMs) で検証し, タスクユーティリティを保ちながら, 敏感な幾何学的歪みを効果的に解消することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fairness in machine learning is increasingly critical, yet standard approaches often treat data as static points in a high-dimensional space, ignoring the underlying generative structure. We posit that sensitive attributes (e.g., race, gender) do not merely shift data distributions but causally warp the geometry of the data manifold itself. To address this, we introduce Causal Manifold Fairness (CMF), a novel framework that bridges causal inference and geometric deep learning. CMF learns a latent representation where the local Riemannian geometry, defined by the metric tensor and curvature, remains invariant under counterfactual interventions on sensitive attributes. By enforcing constraints on the Jacobian and Hessian of the decoder, CMF ensures that the rules of the latent space (distances and shapes) are preserved across demographic groups. We validate CMF on synthetic Structural Causal Models (SCMs), demonstrating that it effectively disentangles sensitive geometric warping while preserving task utility, offering a rigorous quantification of the fairness-utility trade-off via geometric metrics.
- Abstract(参考訳): 機械学習の公正性はますます重要になっているが、標準的なアプローチでは、高次元空間における静的な点としてデータを扱うことが多く、基礎となる生成構造を無視している。
センシティブな属性(例えば、人種、性別)は、単にデータ分布をシフトするだけでなく、データ多様体自体の幾何学を慎重にワープする、と仮定する。
そこで本研究では,因果推論と幾何学的深層学習を橋渡しする新しいフレームワークであるCausal Manifold Fairness(CMF)を紹介する。
CMFは、計量テンソルと曲率によって定義される局所リーマン幾何学が、感度属性に対する反実的介入の下で不変であるような潜在表現を学ぶ。
デコーダのヤコビアンとヘッセンの制約を強制することにより、CMFはラテント空間(距離と形状)の規則が人口群全体にわたって保持されることを保証する。
我々はCMFを合成構造因果モデル(SCMs)上で検証し、タスクユーティリティを保ちながら感性のある幾何学的ワープを効果的に解き、幾何学的指標による公平性・実用性トレードオフの厳密な定量化を提供することを示した。
関連論文リスト
- An approach to Fisher-Rao metric for infinite dimensional non-parametric information geometry [0.6138671548064355]
無限次元であることから、非パラメトリックな情報幾何学は長い間「難易度障壁」に直面してきた。
本稿では,タンジェント空間の直交分解による難易度解決のための新しい枠組みを提案する。
情報キャプチャ比を定義することにより,高次元データの内在次元を推定する厳密な手法を提案する。
論文 参考訳(メタデータ) (2025-12-25T00:18:41Z) - Manifold Percolation: from generative model to Reinforce learning [0.26905021039717986]
生成的モデリングは通常、学習マッピング規則としてフレーム化されるが、これらの規則にアクセスできない観察者の視点からすると、そのタスクは確率分布から幾何学的支援を引き離すことになる。
本研究は, サンプリングプロセスが, 高次元密度推定を支持面上の幾何カウント問題に効果的に投射するので, 連続体パーコレーションは, この支援解析に一意に適していることを示す。
論文 参考訳(メタデータ) (2025-11-25T17:12:42Z) - GeoGNN: Quantifying and Mitigating Semantic Drift in Text-Attributed Graphs [59.61242815508687]
テキスト分散グラフ(TAG)上のグラフニューラルネットワーク(GNN)は、事前訓練された言語モデル(PLM)を使用してノードテキストを符号化し、これらの埋め込みを線形近傍アグリゲーションを通じて伝播する。
本研究は,意味的ドリフトの度合いを計測する局所PCAベースの計量を導入し,異なる凝集機構が多様体構造にどのように影響するかを解析するための最初の定量的枠組みを提供する。
論文 参考訳(メタデータ) (2025-11-12T06:48:43Z) - Variational Geometric Information Bottleneck: Learning the Shape of Understanding [0.0]
variational Geometric Information Bottleneck (V-GIB) は、相互情報圧縮と曲率正規化を統合する変分推定器である。
V-GIBは、幾何学的に一貫性があり、データ効率が高く、人間の理解可能な構造と整合した表現への原則的かつ測定可能な経路を提供する。
論文 参考訳(メタデータ) (2025-11-04T11:33:54Z) - Latent Iterative Refinement Flow: A Geometric-Constrained Approach for Few-Shot Generation [5.062604189239418]
少ショット生成に対する新しいアプローチであるLIRF(Latent Iterative Refinement Flow)を導入する。
LIRFは,新しいtextbfmanifold保存損失をトレーニングしたオートエンコーダを用いて,安定な潜伏空間を確立する。
このサイクルの中で、候補サンプルは幾何的テクスチャ補正演算子によって洗練される。
論文 参考訳(メタデータ) (2025-09-24T08:57:21Z) - Calibrating Biased Distribution in VFM-derived Latent Space via Cross-Domain Geometric Consistency [52.52950138164424]
特徴抽出にオフザシェルフ(ビジョン)基礎モデルを利用する場合、特徴分布の幾何学的形状はドメインやデータセット間で顕著な伝達性を示す。
我々は,我々の幾何学的知識誘導分布キャリブレーションフレームワークを,フェデレーション学習とロングテール認識の2つの人気かつ挑戦的な設定で具体化する。
長期学習において、サンプル豊富なカテゴリから移動された幾何学的知識を利用して、サンプル・スカース・テールクラスの真の分布を復元する。
論文 参考訳(メタデータ) (2025-08-19T05:22:59Z) - CP$^2$: Leveraging Geometry for Conformal Prediction via Canonicalization [51.716834831684004]
幾何データシフトにおける共形予測(CP)の問題について検討する。
本稿では,幾何的ポーズなどの幾何学的情報を統合することを提案する。
論文 参考訳(メタデータ) (2025-06-19T10:12:02Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
フェデレートラーニングは、プライバシを考慮したデータ共有を必要とせずに、さまざまなクライアントでモデルをトレーニングすることを目的としている。
本研究では,データの不均一性がグローバル集約モデルの表現に与える影響について検討する。
フェデレーション学習における次元的崩壊を効果的に緩和する新しい手法である sc FedDecorr を提案する。
論文 参考訳(メタデータ) (2022-10-01T09:04:17Z) - Shape And Structure Preserving Differential Privacy [70.08490462870144]
正方形距離関数の勾配がラプラス機構よりも感度をよりよく制御できることを示す。
また,2乗距離関数の勾配を用いることで,ラプラス機構よりも感度を制御できることを示す。
論文 参考訳(メタデータ) (2022-09-21T18:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。