論文の概要: Improving Compactness and Reducing Ambiguity of CFIRE Rule-Based Explanations
- arxiv url: http://arxiv.org/abs/2601.03776v1
- Date: Wed, 07 Jan 2026 10:13:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-09 02:15:23.468216
- Title: Improving Compactness and Reducing Ambiguity of CFIRE Rule-Based Explanations
- Title(参考訳): CFIREルールに基づく説明のコンパクト化と曖昧さの低減
- Authors: Sebastian Müller, Tobias Schneider, Ruben Kemna, Vanessa Toborek,
- Abstract要約: CFIREは局所的な説明からコンパクトな代理ルールモデルを構築するアルゴリズムである。
我々は、この曖昧さを調査し、低コントリビューションまたは矛盾するカバレッジを持つルールを除去するポストホックプルーニング戦略を提案する。
複数のデータセットに対する実験では、これらの改善が予測パフォーマンスに最小限の影響で確認されている。
- 参考スコア(独自算出の注目度): 2.522406590703041
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Models trained on tabular data are widely used in sensitive domains, increasing the demand for explanation methods to meet transparency needs. CFIRE is a recent algorithm in this domain that constructs compact surrogate rule models from local explanations. While effective, CFIRE may assign rules associated with different classes to the same sample, introducing ambiguity. We investigate this ambiguity and propose a post-hoc pruning strategy that removes rules with low contribution or conflicting coverage, yielding smaller and less ambiguous models while preserving fidelity. Experiments across multiple datasets confirm these improvements with minimal impact on predictive performance.
- Abstract(参考訳): 表形式のデータに基づいてトレーニングされたモデルは、センシティブなドメインで広く使われており、透明性のニーズを満たすための説明方法の需要が高まっている。
CFIREは、局所的な説明からコンパクトな代理ルールモデルを構築する、この領域における最近のアルゴリズムである。
有効ではあるが、CFIREは異なるクラスに関連するルールを同じサンプルに割り当て、あいまいさを導入する。
我々は,この曖昧さを調査し,コントリビューションの低いルールやコンフリクトの少ないルールを排除し,忠実さを維持しつつ,より小さく,曖昧でないモデルを生成するポストホットプルーニング戦略を提案する。
複数のデータセットに対する実験では、これらの改善が予測パフォーマンスに最小限の影響で確認されている。
関連論文リスト
- Improving Local Fidelity Through Sampling and Modeling Nonlinearity [3.7080015862513847]
Local Interpretable Model-Agnostic Explanation (LIME) は、局所的な決定境界が線形であり、非線形の関係を捉えることができないと仮定する。
本稿では,高忠実度な説明を生成できる新しい手法を提案する。
論文 参考訳(メタデータ) (2025-12-05T09:26:18Z) - MMDCP: A Distribution-free Approach to Outlier Detection and Classification with Coverage Guarantees and SCW-FDR Control [6.429952624399788]
ラベルシフト下でのマルチクラス分類と外乱検出のための統一的なフレームワークを提案する。
修正マハラノビス距離等角予測(MMDCP)は、クラス固有の距離測度と完全な等角予測を組み合わせてスコア関数を構築する。
オラクルと経験的コンフォーマルな$p$-値のギャップを初めて理論的に評価し、クラスワイド偽発見率(CW-FDR)の有効なカバレッジと効果的な制御を確実にする。
論文 参考訳(メタデータ) (2025-11-15T03:48:44Z) - Domain Adaptation via Feature Refinement [0.3867363075280543]
本稿では,分散シフト下での非教師付きドメイン適応のための簡易かつ効果的なフレームワークであるDAFR(Domain Adaptation via Feature Refinement)を提案する。
提案手法は, ラベルなし対象データを用いたバッチ正規化統計の適応, ソース学習モデルからの特徴蒸留, 仮説伝達の3つの重要な要素を組み合わせた。
論文 参考訳(メタデータ) (2025-08-22T06:32:19Z) - Regularizing Subspace Redundancy of Low-Rank Adaptation [54.473090597164834]
本稿では、マッピング部分空間間の冗長性を明示的にモデル化し、低ランク適応のサブスペース冗長性を適応的に正規化する手法であるReSoRAを提案する。
提案手法は、視覚言語検索や標準的な視覚分類ベンチマークにおいて、様々なバックボーンやデータセットにまたがる既存のPETL手法を一貫して促進する。
トレーニングの監督として、ReSoRAは追加の推論コストなしで、プラグイン・アンド・プレイ方式で既存のアプローチにシームレスに統合することができる。
論文 参考訳(メタデータ) (2025-07-28T11:52:56Z) - Optimal Classification under Performative Distribution Shift [13.508249764979075]
本稿では,動作効果をプッシュフォワード尺度としてモデル化した新しい視点を提案する。
我々は、新しい仮定のセットの下で、パフォーマンスリスクの凸性を証明する。
また, 性能リスクの最小化を min-max 変動問題として再定義することにより, 逆向きの頑健な分類との関係を確立する。
論文 参考訳(メタデータ) (2024-11-04T12:20:13Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
我々は,非平均場(NMF)変動推定フレームワークにアンサンブルカルマンフィルタ(EnKF)を導入し,潜在状態の後方分布を近似する。
EnKFとGPSSMのこの新しい結婚は、変分分布の学習における広範なパラメータ化の必要性をなくすだけでなく、エビデンスの下限(ELBO)の解釈可能でクローズドな近似を可能にする。
得られたEnKF支援オンラインアルゴリズムは、データ適合精度を確保しつつ、モデル正規化を組み込んで過度適合を緩和し、目的関数を具現化する。
論文 参考訳(メタデータ) (2023-12-10T15:22:30Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
変分オートエンコーダ(VAE)は、償却変分推論に基づいて潜伏変数の後部を近似する。
よりディバースで不確実な潜在空間を学習するための代替モデルDU-VAEを提案する。
論文 参考訳(メタデータ) (2021-10-24T07:58:13Z) - ReLACE: Reinforcement Learning Agent for Counterfactual Explanations of
Arbitrary Predictive Models [6.939617874336667]
本稿では,最適対実的説明を生成するためのモデルに依存しないアルゴリズムを提案する。
本手法は,DRLエージェントが相互作用する環境に類似するため,任意のブラックボックスモデルに容易に適用できる。
さらに,DRLエージェントのポリシーから説明可能な決定ルールを抽出し,CF自体を透過的に生成するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-22T17:08:49Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
半教師付きドメイン適応(Semi-DA)の設定の下で不変表現とリスクを同時に学習することを目的とした最初の手法を提案する。
共同で textbfLearning textbfInvariant textbfRepresentations と textbfRisks の LIRR アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-10-09T15:42:35Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
本稿では,複数のモデルを学習する手法を提案する。
分散シフトへの迅速な適応を促進するフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2020-06-12T12:23:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。