論文の概要: A Unified Attention U-Net Framework for Cross-Modality Tumor Segmentation in MRI and CT
- arxiv url: http://arxiv.org/abs/2601.06187v1
- Date: Wed, 07 Jan 2026 23:50:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-13 19:08:00.656747
- Title: A Unified Attention U-Net Framework for Cross-Modality Tumor Segmentation in MRI and CT
- Title(参考訳): MRIとCTにおける異所性腫瘍分離のための統一注意U-Netフレームワーク
- Authors: Nishan Rai, Pushpa R. Dahal,
- Abstract要約: 本研究では,MRI (BraTS 2021) と CT (LIDC-IDRI) データセットを併用した統合型注意U-Netアーキテクチャを提案する。
提案するパイプラインは、モーダリティ調和前処理、注意誘導スキップ接続、およびモーダリティ対応のFocal Tversky損失関数を組み込んだものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents a unified Attention U-Net architecture trained jointly on MRI (BraTS 2021) and CT (LIDC-IDRI) datasets to investigate the generalizability of a single model across diverse imaging modalities and anatomical sites. Our proposed pipeline incorporates modality-harmonized preprocessing, attention-gated skip connections, and a modality-aware Focal Tversky loss function. To the best of our knowledge, this study is among the first to evaluate a single Attention U-Net trained simultaneously on separate MRI (BraTS) and CT (LIDC-IDRI) tumor datasets, without relying on modality-specific encoders or domain adaptation. The unified model demonstrates competitive performance in terms of Dice coefficient, IoU, and AUC on both domains, thereby establishing a robust and reproducible baseline for future research in cross-modality tumor segmentation.
- Abstract(参考訳): 本研究では,MRI(BraTS 2021)とCT(LIDC-IDRI)データセットを併用した統合型注意U-Netアーキテクチャを提案する。
提案するパイプラインは、モーダリティ調和前処理、注意誘導スキップ接続、およびモーダリティ対応のFocal Tversky損失関数を組み込んだものである。
本研究は,MRI(BraTS)とCT(LIDC-IDRI)の腫瘍データセットを同時にトレーニングした単一注意U-Netを,モダリティ特異的エンコーダやドメイン適応に頼らずに評価した最初の事例である。
統合モデルは,両領域におけるDice係数,IoU,AUCの両領域における競合性能を示す。
関連論文リスト
- RL-U$^2$Net: A Dual-Branch UNet with Reinforcement Learning-Assisted Multimodal Feature Fusion for Accurate 3D Whole-Heart Segmentation [0.624829068285122]
機能アライメントのための強化学習により強化されたデュアルブランチU-Netアーキテクチャを提案する。
このモデルは、デュアルブランチU字型ネットワークを用いて、CTとMRIのパッチを並列に処理し、新しいRL-XAlignモジュールを導入する。
公開されているMM-WHS 2017データセットの実験結果は、提案されたRL-U$2$Netが既存の最先端メソッドより優れていることを示している。
論文 参考訳(メタデータ) (2025-08-04T16:12:06Z) - Semi-supervised learning and integration of multi-sequence MR-images for carotid vessel wall and plaque segmentation [0.6597195879147557]
頸動脈血管壁とプラークのセグメンテーションのためのマルチシーケンスMRIデータを統合するための半教師付き深層学習手法を提案する。
動脈硬化症52例に対し, それぞれ5つのMRIシークエンスを施行した。
論文 参考訳(メタデータ) (2025-07-10T07:31:31Z) - An Arbitrary-Modal Fusion Network for Volumetric Cranial Nerves Tract Segmentation [21.228897192093573]
そこで我々は,CNTSeg-v2と呼ばれる,体積性頭蓋神経(CNs)の領域分割のための新しい任意モード核融合ネットワークを提案する。
我々のモデルは、他の補助モーダルから情報的特徴を効果的に抽出するために設計されたArbitrary-Modal Collaboration Module (ACM)を含んでいる。
我々のCNTSeg-v2は最先端のセグメンテーション性能を達成し、競合するすべての手法より優れています。
論文 参考訳(メタデータ) (2025-05-05T06:00:41Z) - Foundation Model for Whole-Heart Segmentation: Leveraging Student-Teacher Learning in Multi-Modal Medical Imaging [0.510750648708198]
心血管疾患の診断にはCTとMRIによる全肝分画が不可欠である。
既存の方法は、モダリティ固有のバイアスと、広範なラベル付きデータセットの必要性に苦慮している。
学生-教師アーキテクチャに基づく自己指導型学習フレームワークを用いて,全音節セグメンテーションのための基礎モデルを提案する。
論文 参考訳(メタデータ) (2025-03-24T14:47:54Z) - Multi-modal Cross-domain Self-supervised Pre-training for fMRI and EEG Fusion [3.8153469790341084]
ドメイン間でのマルチモーダル情報の相乗化に自己教師付き学習を活用する新しい手法を提案する。
提案手法を利用した大規模事前学習データセットと事前学習MCSPモデルを構築した。
本研究は,fMRIと脳波の融合の著しい進展に寄与し,クロスドメイン機能の統合を図っている。
論文 参考訳(メタデータ) (2024-09-27T20:25:17Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Towards Cross-modality Medical Image Segmentation with Online Mutual
Knowledge Distillation [71.89867233426597]
本稿では,あるモダリティから学習した事前知識を活用し,別のモダリティにおけるセグメンテーション性能を向上させることを目的とする。
モーダル共有知識を徹底的に活用する新しい相互知識蒸留法を提案する。
MMWHS 2017, MMWHS 2017 を用いた多クラス心筋セグメンテーション実験の結果, CT セグメンテーションに大きな改善が得られた。
論文 参考訳(メタデータ) (2020-10-04T10:25:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。