論文の概要: MegaFlow: Large-Scale Distributed Orchestration System for the Agentic Era
- arxiv url: http://arxiv.org/abs/2601.07526v2
- Date: Tue, 13 Jan 2026 12:02:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-14 14:06:39.277237
- Title: MegaFlow: Large-Scale Distributed Orchestration System for the Agentic Era
- Title(参考訳): MegaFlow:エージェント時代の大規模分散オーケストレーションシステム
- Authors: Lei Zhang, Mouxiang Chen, Ruisheng Cao, Jiawei Chen, Fan Zhou, Yiheng Xu, Jiaxi Yang, Zeyao Ma, Liang Chen, Changwei Luo, Kai Zhang, Fan Yan, KaShun Shum, Jiajun Zhang, Zeyu Cui, Feng Hu, Junyang Lin, Binyuan Hui, Min Yang,
- Abstract要約: MegaFlowは、エージェント環境ワークロードの効率的なスケジューリング、リソース割り当て、きめ細かいタスク管理を可能にする、大規模な分散オーケストレーションシステムである。
エージェントのトレーニングデプロイメントでは、MegaFlowは、高いシステムの安定性を維持しながら、数万の並行エージェントタスクを編成し、効率的なリソース利用を実現しています。
- 参考スコア(独自算出の注目度): 74.42509044145417
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid development of interactive and autonomous AI systems signals our entry into the agentic era. Training and evaluating agents on complex agentic tasks such as software engineering and computer use requires not only efficient model computation but also sophisticated infrastructure capable of coordinating vast agent-environment interactions. However, no open-source infrastructure can effectively support large-scale training and evaluation on such complex agentic tasks. To address this challenge, we present MegaFlow, a large-scale distributed orchestration system that enables efficient scheduling, resource allocation, and fine-grained task management for agent-environment workloads. MegaFlow abstracts agent training infrastructure into three independent services (Model Service, Agent Service, and Environment Service) that interact through unified interfaces, enabling independent scaling and flexible resource allocation across diverse agent-environment configurations. In our agent training deployments, MegaFlow successfully orchestrates tens of thousands of concurrent agent tasks while maintaining high system stability and achieving efficient resource utilization. By enabling such large-scale agent training, MegaFlow addresses a critical infrastructure gap in the emerging agentic AI landscape.
- Abstract(参考訳): インタラクティブで自律的なAIシステムの急速な発展は、エージェント時代への参入を示唆している。
ソフトウェア工学やコンピュータ利用のような複雑なエージェントタスクにおけるエージェントの訓練と評価には、効率的なモデル計算だけでなく、エージェントと環境の相互作用をコーディネートできる高度なインフラも必要である。
しかし、そのような複雑なエージェントタスクに対する大規模なトレーニングと評価を効果的にサポートするオープンソースインフラストラクチャは存在しない。
この課題に対処するために,エージェント環境負荷に対する効率的なスケジューリング,リソース割り当て,きめ細かいタスク管理を可能にする大規模分散オーケストレーションシステムであるMegaFlowを提案する。
MegaFlowは、エージェントトレーニングインフラストラクチャを3つの独立したサービス(モデルサービス、エージェントサービス、環境サービス)に抽象化する。
エージェントのトレーニングデプロイメントでは、MegaFlowは、高いシステムの安定性を維持しながら、数万の並行エージェントタスクを編成し、効率的なリソース利用を実現しています。
このような大規模なエージェントトレーニングを可能にすることで、MegaFlowは、新たなエージェントAIの世界における重要なインフラストラクチャギャップに対処する。
関連論文リスト
- A Survey on Agent Workflow -- Status and Future [2.817843718857682]
この調査は、エージェントワークフローシステムの包括的なレビューを提供する。
既存のシステムを機能機能機能とアーキテクチャの2つの重要な側面に沿って分類する。
共通パターン、潜在的な技術的課題、新たなトレンドを強調します。
論文 参考訳(メタデータ) (2025-08-02T04:15:30Z) - Efficient and Scalable Agentic AI with Heterogeneous Systems [1.8921715645847679]
AIエージェントは、幅広いアプリケーションにおいて支配的なワークロードとして現れており、企業や消費者にAIの約束されたメリットを提供するための手段として期待されている。
AIエージェントの使用をスケールするには、効率的でスケーラブルなデプロイメントとエージェントサービスインフラストラクチャが必要です。
異種計算インフラストラクチャ上でAIエージェントのワークロードを動的にオーケストレーションするシステム設計を提案する。
論文 参考訳(メタデータ) (2025-07-25T19:02:42Z) - Towards Resource-Efficient Compound AI Systems [4.709762596591902]
複合AIシステムは、モデル、レトリバー、外部ツールなどの複数の相互作用コンポーネントを統合する。
現在の実装は、アプリケーションロジックと実行の詳細の密結合によって、非効率なリソース利用に悩まされています。
本稿では、動的スケジューリングとリソース認識意思決定のための宣言型ワークフロープログラミングモデルと適応型ランタイムシステムを提案する。
論文 参考訳(メタデータ) (2025-01-28T02:15:34Z) - Very Large-Scale Multi-Agent Simulation in AgentScope [112.98986800070581]
我々は,ユーザフレンドリーなマルチエージェントプラットフォームであるAgentScopeの新機能とコンポーネントを開発した。
高いスケーラビリティと高効率を実現するために,アクタをベースとした分散機構を提案する。
また、多数のエージェントを便利に監視し、管理するためのWebベースのインターフェースも提供します。
論文 参考訳(メタデータ) (2024-07-25T05:50:46Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
既存のマルチエージェントフレームワークは、多種多様なサードパーティエージェントの統合に苦慮することが多い。
我々はこれらの制限に対処する新しいフレームワークであるInternet of Agents (IoA)を提案する。
IoAはエージェント統合プロトコル、インスタントメッセージのようなアーキテクチャ設計、エージェントのチーム化と会話フロー制御のための動的メカニズムを導入している。
論文 参考訳(メタデータ) (2024-07-09T17:33:24Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。