論文の概要: C-GRASP: Clinically-Grounded Reasoning for Affective Signal Processing
- arxiv url: http://arxiv.org/abs/2601.10342v1
- Date: Thu, 15 Jan 2026 12:35:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-16 19:43:19.132099
- Title: C-GRASP: Clinically-Grounded Reasoning for Affective Signal Processing
- Title(参考訳): C-GRASP:Affective Signal Processingのための臨床応用
- Authors: Cheng Lin Cheng, Ting Chuan Lin, Chai Kai Chang,
- Abstract要約: 心拍変動(HRV)は、自律神経監視のための重要な非侵襲マーカーである。
大規模言語モデル(LLM)をHRV解釈に適用することは、生理的幻覚によって妨げられる。
我々は,HRV解釈を8つのトレース可能な推論ステップに分解する,ガードレール付きRAG拡張パイプラインであるC-GRASPを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Heart rate variability (HRV) is a pivotal noninvasive marker for autonomic monitoring; however, applying Large Language Models (LLMs) to HRV interpretation is hindered by physiological hallucinations. These include respiratory sinus arrhythmia (RSA) contamination, short-data instability in nonlinear metrics, and the neglect of individualized baselines in favor of population norms. We propose C-GRASP (Clinically-Grounded Reasoning for Affective Signal Processing), a guardrailed RAG-enhanced pipeline that decomposes HRV interpretation into eight traceable reasoning steps. Central to C-GRASP is a Z-score Priority Hierarchy that enforces the weighting of individualized baseline shifts over normative statistics. The system effectively mitigates spectral hallucinations through automated RSA-aware guardrails, preventing contamination of frequency-domain indices. Evaluated on 414 trials from the DREAMER dataset, C-GRASP integrated with high-scale reasoning models (e.g., MedGemma3-thinking) achieved superior performance in 4-class emotion classification (37.3% accuracy) and a Clinical Reasoning Consistency (CRC) score of 69.6%. Ablation studies confirm that the individualized Delta Z-score module serves as the critical logical anchor, preventing the "population bias" common in native LLMs. Ultimately, C-GRASP transitions affective computing from black-box classification to transparent, evidence-based clinical decision support, paving the way for safer AI integration in biomedical engineering.
- Abstract(参考訳): 心拍変動 (HRV) は自律神経監視において重要な非侵襲マーカーであるが, 大規模言語モデル (LLM) をHRVの解釈に適用することは生理的幻覚を妨げている。
呼吸性副鼻腔不整脈(RSA)汚染、非線形指標における短データ不安定性、個体群基準を優先する個別化ベースラインの無視などである。
C-GRASP(Clinally-Grounded Reasoning for Affective Signal Processing)を提案する。
C-GRASPの中心はZスコア優先階層であり、標準統計よりも個別化されたベースラインシフトの重み付けを強制する。
このシステムは、自動RSA対応ガードレールによるスペクトル幻覚を効果的に軽減し、周波数領域の指標の汚染を防ぐ。
DREAMERデータセットによる414の試験で評価され、C-GRASPは4クラスの感情分類(37.3%の精度)と臨床推論一貫性(CRC)スコア69.6%で優れたパフォーマンスを達成した。
アブレーション研究により、個別化されたデルタZスコアモジュールが臨界論理アンカーとして機能し、ネイティブLLMに共通する「集団バイアス」を防ぐことが確認された。
最終的に、C-GRASPは、感情的コンピューティングをブラックボックス分類から透明でエビデンスに基づく臨床的決定サポートに移行し、バイオメディカルエンジニアリングにおけるより安全なAI統合の道を開く。
関連論文リスト
- Conformal Lesion Segmentation for 3D Medical Images [82.92159832699583]
本稿では,データ駆動しきい値の校正をコンフォーマル化することで,テスト時間FNRが目標許容値以下であることを保証する,リスク制約付きフレームワークを提案する。
5つのバックボーンモデルにまたがる6つの3D-LSデータセット上でのCLSの統計的健全性と予測性能を検証し,臨床実践におけるリスク認識セグメンテーションの展開に関する実用的な知見を得た。
論文 参考訳(メタデータ) (2025-10-19T08:21:00Z) - From Scores to Steps: Diagnosing and Improving LLM Performance in Evidence-Based Medical Calculations [45.414878840652115]
大規模言語モデル(LLM)は医療ベンチマークで有望な性能を示した。
しかし、医学的な計算を行う能力は未熟であり、評価も不十分である。
本研究は,臨床信頼性を重視した医療計算評価を再考する。
論文 参考訳(メタデータ) (2025-09-20T09:10:26Z) - LGE-Guided Cross-Modality Contrastive Learning for Gadolinium-Free Cardiomyopathy Screening in Cine CMR [51.11296719862485]
CMRを用いたガドリニウムフリー心筋症スクリーニングのためのコントラシブラーニングおよびクロスモーダルアライメントフレームワークを提案する。
CMRとLate Gadolinium Enhancement (LGE) 配列の潜伏空間を整列させることにより, 本モデルでは線維症特異的な病理組織をCMR埋め込みにエンコードする。
論文 参考訳(メタデータ) (2025-08-23T07:21:23Z) - Retrieval is Not Enough: Enhancing RAG Reasoning through Test-Time Critique and Optimization [58.390885294401066]
Retrieval-augmented Generation (RAG) は知識基底型大規模言語モデル(LLM)を実現するためのパラダイムとして広く採用されている。
RAGパイプラインは、モデル推論が得られた証拠と整合性を維持するのに失敗することが多く、事実上の矛盾や否定的な結論につながる。
批判駆動アライメント(CDA)に基づく新しい反復的枠組みであるAlignRAGを提案する。
AlignRAG-autoは、動的に洗練を終了し、批判的な反復回数を事前に指定する必要がなくなる自律的な変種である。
論文 参考訳(メタデータ) (2025-04-21T04:56:47Z) - Continuous max-flow augmentation of self-supervised few-shot learning on SPECT left ventricles [0.0]
本研究の目的は, 診断センターとクリニックが, 小型・低品質のSPECTラベルに基づいて自動的に心筋のセグメンテーションを行うためのレシピを提供することである。
SPECT装置の様々な領域における3次元U-Net自己教師学習(SSL)アプローチを強化するために,CMF(Continuous Max-Flow)と事前形状情報の組み合わせを開発した。
論文 参考訳(メタデータ) (2024-05-09T03:19:19Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
深層学習モデルは、自動的にMS病変を分節する約束を示しているが、正確な注釈付きデータの不足は、この分野の進歩を妨げている。
我々は,MS病変の不均衡分布とファジィ境界を考慮したDecoupled Hard Label Correction(DHLC)戦略を導入する。
また,集約型中央モデルを利用したCELC(Centrally Enhanced Label Correction)戦略も導入した。
論文 参考訳(メタデータ) (2023-08-31T00:36:10Z) - Deep Metric Learning for the Hemodynamics Inference with
Electrocardiogram Signals [14.972877620537686]
我々は、中央の圧力ラベルを伴わない540万以上のECGを含むデータセットを使用して、自己教師型DMLモデルを事前トレーニングします。
8,172mPCWPラベルのECGを用いた教師付きDMLモデルでは,mPCWP回帰タスクの性能が著しく向上した。
論文 参考訳(メタデータ) (2023-08-09T01:30:07Z) - Robust and Generalisable Segmentation of Subtle Epilepsy-causing
Lesions: a Graph Convolutional Approach [1.180462901068842]
FCD(Foccal cortical dysplasia)は薬剤抵抗性てんかんの主要な原因であり、手術で治療できる。
そのため、手動の傷口マスクは高価で、限定的であり、ラッター間変動が大きい。
本稿では,グラフ畳み込みネットワーク(GCN)を用いたセマンティックセグメンテーション(セマンティックセグメンテーション,セマンティックセグメンテーション,セマンティックセグメンテーション)の手法を提案する。
論文 参考訳(メタデータ) (2023-06-02T08:56:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。