論文の概要: Adjusted Similarity Measures and a Violation of Expectations
- arxiv url: http://arxiv.org/abs/2601.10641v1
- Date: Thu, 15 Jan 2026 18:01:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-16 19:43:19.253783
- Title: Adjusted Similarity Measures and a Violation of Expectations
- Title(参考訳): 調整された類似度対策と期待のバイオレーション
- Authors: William L. Lippitt, Edward J. Bedrick, Nichole E. Carlson,
- Abstract要約: 調整された類似度尺度は、離散的なラベリングを比較する上で不可欠なツールである。
歴史的・分析的な理由から、順応分布に関して度々調整される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adjusted similarity measures, such as Cohen's kappa for inter-rater reliability and the adjusted Rand index used to compare clustering algorithms, are a vital tool for comparing discrete labellings. These measures are intended to have the property of 0 expectation under a null distribution and maximum value 1 under maximal similarity to aid in interpretation. Measures are frequently adjusted with respect to the permutation distribution for historic and analytic reasons. There is currently renewed interest in considering other null models more appropriate for context, such as clustering ensembles permitting a random number of identified clusters. The purpose of this work is two -- fold: (1) to generalize the study of the adjustment operator to general null models and to a more general procedure which includes statistical standardization as a special case and (2) to identify sufficient conditions for the adjustment operator to produce the intended properties, where sufficient conditions are related to whether and how observed data are incorporated into null distributions. We demonstrate how violations of the sufficient conditions may lead to substantial breakdown, such as by producing a non-positive measure under traditional adjustment rather than one with mean 0, or by producing a measure which is deterministically 0 under statistical standardization.
- Abstract(参考訳): Cohen's kappa for inter-rater reliability(英語版)や、クラスタリングアルゴリズムの比較に使用される調整されたRand index(英語版)のような調整された類似度対策は、離散ラベリングを比較する上で欠かせないツールである。
これらの測度は、ヌル分布の下での 0 の期待特性と、解釈の助けとなる最大類似性の下での最大値 1 を持つことを意図している。
歴史的・分析的な理由から、順応分布に関して度々調整される。
現在、クラスタリングアンサンブルのようなコンテキストに適した他のnullモデルを考えることへの関心が再燃している。
本研究の目的は,(1) 調整作用素の研究を一般のヌルモデルに一般化すること,(2) 調整作用素が意図した特性を生成するための十分な条件を特定すること,(2) 観測されたデータがヌル分布にどのように組み込まれているか,などである。
例えば、平均0の値ではなく、従来の調整で非正測度を生成することや、統計的標準化で決定的に0の値を生成することなどである。
関連論文リスト
- Cauchy-Schwarz Fairness Regularizer [17.898277374771254]
機械学習におけるグループフェアネスは、モデル予測とセンシティブな属性間の依存を減らす正規化子を追加することで強制されることが多い。
感性群に条件付けられた予測分布間の経験的CSのばらつきを罰するコーシー=シュワルツフェアネス正規化器を提案する。
論文 参考訳(メタデータ) (2025-12-10T09:39:30Z) - Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores [52.92618442300405]
有限サンプルにおいて、正確に分布のない条件付きカバレッジを達成することは不可能である。
本稿では,最も重要となる範囲を対象とするコンフォメーション予測アルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-01-17T12:01:56Z) - Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
生成モデルは出力に対する厳密な統計的保証を欠いている。
厳密な統計的保証を満たす予測セットを生成する逐次共形予測法を提案する。
このことは、高い確率で予測セットが少なくとも1つの許容可能な(または有効な)例を含むことを保証している。
論文 参考訳(メタデータ) (2024-10-02T15:26:52Z) - On Regularization and Inference with Label Constraints [62.60903248392479]
機械学習パイプラインにおけるラベル制約を符号化するための2つの戦略、制約付き正規化、制約付き推論を比較した。
正規化については、制約に不整合なモデルを前置することで一般化ギャップを狭めることを示す。
制約付き推論では、モデルの違反を訂正することで人口リスクを低減し、それによってその違反を有利にすることを示す。
論文 参考訳(メタデータ) (2023-07-08T03:39:22Z) - The Decaying Missing-at-Random Framework: Model Doubly Robust Causal Inference with Partially Labeled Data [8.916614661563893]
因果推論を両立させるために,MARフレームワークの欠落と関連するアプローチを導入する。
これはラベル付け機構における選択バイアスとラベル付きグループとラベルなしグループの極端な不均衡に同時に対処する。
因果関係の堅牢性を確保するため,平均治療効果に対するバイアス低減SS推定器を提案する。
論文 参考訳(メタデータ) (2023-05-22T07:37:12Z) - Evaluating Aleatoric Uncertainty via Conditional Generative Models [15.494774321257939]
本研究では,アレータティック不確実性推定のための条件生成モデルについて検討する。
本稿では,2つの条件分布間の差を測定するための2つの指標を提案する。
我々は,我々の測定値が条件分布の相違を正確に測定する方法を数値的に示す。
論文 参考訳(メタデータ) (2022-06-09T05:39:04Z) - Selective Regression Under Fairness Criteria [30.672082160544996]
少数派集団のパフォーマンスは、カバー範囲を減らしながら低下する場合もある。
満足度基準を満たす特徴を構築できれば、そのような望ましくない行動は避けられることを示す。
論文 参考訳(メタデータ) (2021-10-28T19:05:12Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
推定対象の偏りを伴わずに高い重なりを生じさせる,デコンファウンディングスコアを導入する。
分離スコアは観測データで識別可能なゼロ共分散条件を満たすことを示す。
特に,この手法が標準正規化の魅力的な代替となることを示す。
論文 参考訳(メタデータ) (2021-04-12T18:50:11Z) - Predictive Value Generalization Bounds [27.434419027831044]
本稿では,二項分類の文脈におけるスコアリング関数の評価のためのビクテリオンフレームワークについて検討する。
本研究では,新しい分布自由な大偏差と一様収束境界を導出することにより,予測値に関するスコアリング関数の特性について検討する。
論文 参考訳(メタデータ) (2020-07-09T21:23:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。