論文の概要: A Constraint Programming Model for the Super-Agile Earth Observation Satellite Imaging Scheduling Problem
- arxiv url: http://arxiv.org/abs/2601.11967v1
- Date: Sat, 17 Jan 2026 08:52:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-21 22:47:22.398216
- Title: A Constraint Programming Model for the Super-Agile Earth Observation Satellite Imaging Scheduling Problem
- Title(参考訳): 超アジャイル地球観測衛星イメージングスケジューリング問題に対する制約計画モデル
- Authors: Margarida Caleiras, Samuel Moniz, Paulo Nascimento,
- Abstract要約: 地球観測衛星は、前例のない画像の柔軟性を提供する。
従来のアジャイル衛星の既存のアプローチは、様々な観測期間と複数の撮像方向を考慮していない。
本研究は,SAEOS-ISPにおける制約プログラミングの正確な定式化について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the dependence on satellite imaging continues to grow, modern satellites have become increasingly agile, with the new generation, namely super-agile Earth observation satellites (SAEOS), providing unprecedented imaging flexibility. The highly dynamic capabilities of these satellites introduce additional challenges to the scheduling of observation tasks, as existing approaches for conventional agile satellites do not account for variable observation durations and multiple imaging directions. Although some efforts have been made in this regard, the SAEOS imaging scheduling problem (SAEOS-ISP) remains largely unexplored, and no exact approaches have yet been proposed. In this context, this study presents the first exact Constraint Programming formulation for the SAEOS-ISP, considering flexible observation windows, multiple pointing directions and sequence-dependent transition times across multiple satellites. Computational experiments on a newly generated benchmark set demonstrate that the model can be solved efficiently and within very short computational times. Moreover, the results also show that the proposed approach has the potential to achieve higher computational performance compared to the non-exact approaches that are currently considered state-of-the-art.
- Abstract(参考訳): 衛星画像への依存が高まるにつれて、現代の衛星はますます敏感になり、新しい世代の地球観測衛星(SAEOS)は前例のない画像の柔軟性を提供する。
これらの衛星の非常にダイナミックな能力は、従来のアジャイル衛星の既存のアプローチでは観測時間や複数の撮像方向を考慮していないため、観測タスクのスケジューリングにさらなる課題をもたらす。
この点に関していくつかの取り組みがなされているが、SAEOS画像スケジューリング問題 (SAEOS-ISP) はほとんど未検討であり、正確なアプローチは提案されていない。
本研究は, フレキシブルな観測窓, 複数のポインティング方向, および複数の衛星間のシーケンス依存遷移時間を考慮した, SAEOS-ISP の厳密な制約プログラミング定式化について述べる。
新たに生成されたベンチマークセットの計算実験は、このモデルを非常に短い計算時間で効率的に解けることを示した。
さらに,提案手法は,現在最先端と見なされている非現実的手法と比較して,高い計算性能が得られる可能性が示唆された。
関連論文リスト
- ASTREA: Introducing Agentic Intelligence for Orbital Thermal Autonomy [51.56484100374058]
ASTREAは、自律的な宇宙船運用のためのフライト・ヘリテージ・ハードウェア上で実行される最初のエージェント・システムである。
我々は,資源制約付き大規模言語モデル(LLM)エージェントと強化学習コントローラを,空間対応プラットフォームに適した非同期アーキテクチャに統合する。
論文 参考訳(メタデータ) (2025-09-16T08:52:13Z) - AI-Driven Collaborative Satellite Object Detection for Space Sustainability [29.817805350971366]
低地球軌道(LEO)における衛星密度の増大は、宇宙の持続可能性に深刻な課題をもたらす。
従来の地上追跡システムは、レイテンシとカバレッジの制限によって制限されている。
本稿では,複数の衛星間での深層学習(DL)に基づく空間オブジェクト検出タスクの協調実行を可能にする新しい衛星クラスタリングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-08-01T16:31:55Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
衛星データ中継ミッションの送信効率の低さは、現在システムの構築を制約している問題となっている。
本研究では,タスク間の状態特性を考慮した距離類似性に基づく遺伝的最適化アルゴリズム(DSGA)を提案し,タスク間の類似性を決定するための重み付きユークリッド距離法を提案する。
論文 参考訳(メタデータ) (2024-08-29T06:57:45Z) - Earth Observation Satellite Scheduling with Graph Neural Networks [1.1684839631276702]
本稿では,グラフニューラルネットワーク(GNN)と深部強化学習(DRL)に基づく観測結果の選択とスケジューリングを行う新しい手法を提案する。
シミュレーションにより,より大規模な実世界のインスタンスに一般化し,従来の手法と比較して非常に競争力のある性能で学習できることが示唆された。
論文 参考訳(メタデータ) (2024-08-27T13:10:26Z) - SatDiffMoE: A Mixture of Estimation Method for Satellite Image Super-resolution with Latent Diffusion Models [3.839322642354617]
我々はtextbfSatDiffMoE と呼ばれる新しい拡散型融合アルゴリズムを提案する。
アルゴリズムは非常に柔軟で、任意の数の低解像度画像のトレーニングと推測が可能である。
実験の結果,SatDiffMoE法は衛星画像の超解像処理に優れていた。
論文 参考訳(メタデータ) (2024-06-14T17:58:28Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - SatMAE: Pre-training Transformers for Temporal and Multi-Spectral
Satellite Imagery [74.82821342249039]
Masked Autoencoder(MAE)に基づく時間・マルチスペクトル衛星画像の事前学習フレームワークであるSatMAEについて述べる。
時間的情報を活用するために、時間にわたって画像パッチを個別にマスキングする時間的埋め込みを含む。
論文 参考訳(メタデータ) (2022-07-17T01:35:29Z) - Multi-strip observation scheduling problem for ac-tive-imaging agile
earth observation satellites [0.0]
能動画像型地球観測衛星(MOSP)のマルチストリップ観測スケジューリング問題について検討する。
適応的大近傍探索アルゴリズム (ALNS) と非支配的ソート遺伝的アルゴリズム (NSGA-II) の組合せ力を統合した適応的二目的メメティクスアルゴリズムとともに、二目的最適化モデルを示す。
我々のモデルは既存のモデルよりも多用途であり、応用問題解決の能力を高める。
論文 参考訳(メタデータ) (2022-07-04T08:35:57Z) - Bootstrap Motion Forecasting With Self-Consistent Constraints [52.88100002373369]
自己整合性制約を用いた動き予測をブートストラップする新しい枠組みを提案する。
運動予測タスクは、過去の空間的・時間的情報を組み込むことで、車両の将来の軌跡を予測することを目的としている。
提案手法は,既存手法の予測性能を常に向上することを示す。
論文 参考訳(メタデータ) (2022-04-12T14:59:48Z) - Simulated annealing based heuristic for multiple agile satellites
scheduling under cloud coverage uncertainty [1.100580615194563]
アジャイル衛星は、より強力な姿勢操作能力を持つ新世代の地球観測衛星(EOS)である。
私たちは、クラウドカバレッジの不確実性の下で、複数のアジャイルEOSスケジューリング問題に最初に取り組みました。
大規模観測ミッションにおいて高速挿入戦略を併用した模擬焼鈍を改良した。
論文 参考訳(メタデータ) (2020-03-14T16:37:26Z) - Agile Earth observation satellite scheduling over 20 years:
formulations, methods and future directions [69.47531199609593]
高度姿勢操作能力を持つアジャイル衛星は、新世代の地球観測衛星(EOS)である
衛星技術の継続的な改善と打ち上げコストの削減により、アジャイルEOS(AEOS)の開発が加速した。
論文 参考訳(メタデータ) (2020-03-13T09:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。