論文の概要: Dynamic Hand Gesture Recognition for Robot Manipulator Tasks
- arxiv url: http://arxiv.org/abs/2601.12918v1
- Date: Mon, 19 Jan 2026 10:17:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-21 22:47:22.856551
- Title: Dynamic Hand Gesture Recognition for Robot Manipulator Tasks
- Title(参考訳): ロボットマニピュレータタスクの動的手指認識
- Authors: Dharmendra Sharma, Peeyush Thakur, Sandeep Gupta, Narendra Kumar Dhar, Laxmidhar Behera,
- Abstract要約: 本稿では,人間とロボットのシームレスな相互作用を容易にする動的手の動きを認識するための新しいアプローチを提案する。
ロボットに示すジェスチャーのバリエーションはすべて、提案した教師なしモデルを用いて、リアルタイムで正確に認識される。
- 参考スコア(独自算出の注目度): 7.1915299256823175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a novel approach to recognizing dynamic hand gestures facilitating seamless interaction between humans and robots. Here, each robot manipulator task is assigned a specific gesture. There may be several such tasks, hence, several gestures. These gestures may be prone to several dynamic variations. All such variations for different gestures shown to the robot are accurately recognized in real-time using the proposed unsupervised model based on the Gaussian Mixture model. The accuracy during training and real-time testing prove the efficacy of this methodology.
- Abstract(参考訳): 本稿では,人間とロボットのシームレスな対話を容易にする動的手振り認識手法を提案する。
ここでは、各ロボットマニピュレータタスクに特定のジェスチャーが割り当てられる。
そのようなタスクはいくつかあり、そのためいくつかのジェスチャーがある。
これらのジェスチャーは、いくつかの動的変動を引き起こす可能性がある。
ガウス混合モデルに基づいて提案した教師なしモデルを用いて,ロボットに示す様々なジェスチャーのバリエーションをリアルタイムで正確に認識する。
トレーニング中の精度とリアルタイムテストは、この方法論の有効性を証明します。
関連論文リスト
- AnyDexGrasp: General Dexterous Grasping for Different Hands with Human-level Learning Efficiency [49.868970174484204]
我々は,最小限のデータを用いてきめ細やかな把握を学習するための効率的なアプローチを提案する。
提案手法は,40個の訓練対象に対して数百のグリップ試行を行うだけで,人間レベルの学習効率で高い性能を達成できる。
この方法は、ヒューマノイドロボット、人工装具、その他頑丈で汎用的なロボット操作を必要とする領域に対する有望な応用を実証する。
論文 参考訳(メタデータ) (2025-02-23T03:26:06Z) - DiffGen: Robot Demonstration Generation via Differentiable Physics Simulation, Differentiable Rendering, and Vision-Language Model [72.66465487508556]
DiffGenは、微分可能な物理シミュレーション、微分可能なレンダリング、ビジョン言語モデルを統合する新しいフレームワークである。
言語命令の埋め込みとシミュレートされた観察の埋め込みとの距離を最小化することにより、現実的なロボットデモを生成することができる。
実験によると、DiffGenを使えば、人間の努力やトレーニング時間を最小限に抑えて、ロボットデータを効率よく、効果的に生成できる。
論文 参考訳(メタデータ) (2024-05-12T15:38:17Z) - Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
我々は、ゼロショットロボット操作を可能にする汎用的な目標条件ポリシーを学習することを目指している。
私たちのフレームワークであるTrack2Actは、ゴールに基づいて将来のタイムステップで画像内のポイントがどのように動くかを予測する。
学習したトラック予測を残留ポリシーと組み合わせることで,多種多様な汎用ロボット操作が可能となることを示す。
論文 参考訳(メタデータ) (2024-05-02T17:56:55Z) - Interactive Multi-Robot Flocking with Gesture Responsiveness and Musical Accompaniment [0.7659052547635159]
この研究は魅力的なマルチロボットタスクを示し、その主な目的は熱意と関心を喚起することである。
このタスクでは、人間と一緒に動き、ダイナミックで表現力のあるロボット群に参加することが目標である。
この目的に向けて、研究チームはロボットの動きとジェスチャーや音といった対話モードを関連づけるアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-03-30T18:16:28Z) - Dynamic Hand Gesture-Featured Human Motor Adaptation in Tool Delivery
using Voice Recognition [5.13619372598999]
本稿では,革新的なロボット協調フレームワークを提案する。
手の動きや動的動きの認識、音声認識、切り替え可能な制御適応戦略をシームレスに統合する。
ハンドジェスチャ認識における優れた性能を示す実験結果が得られた。
論文 参考訳(メタデータ) (2023-09-20T14:51:09Z) - DMFC-GraspNet: Differentiable Multi-Fingered Robotic Grasp Generation in
Cluttered Scenes [22.835683657191936]
マルチフィンガーロボットグリップは、複雑なオブジェクト操作を行う可能性がある。
マルチフィンガーロボットグリップの現在の技術は、推論時間毎に1つのグリップしか予測しないことが多い。
本稿では,この課題に対処するための3つの主要なコントリビューションを持つ,微分可能なマルチフィンガーグリップ生成ネットワーク(DMFC-GraspNet)を提案する。
論文 参考訳(メタデータ) (2023-08-01T11:21:07Z) - Zero-Shot Robot Manipulation from Passive Human Videos [59.193076151832145]
我々は,人間の映像からエージェント非依存の行動表現を抽出するフレームワークを開発した。
我々の枠組みは、人間の手の動きを予測することに基づいている。
トレーニングされたモデルゼロショットを物理ロボット操作タスクにデプロイする。
論文 参考訳(メタデータ) (2023-02-03T21:39:52Z) - Body Gesture Recognition to Control a Social Robot [5.557794184787908]
本研究では,人間の身体を自然に利用してロボットと対話できるジェスチャー型言語を提案する。
ニューラルネットワークを用いた新しいジェスチャー検出モデルと、ネットワークをトレーニングするための身体ジェスチャーセットを実行する人間のカスタムデータセットを作成しました。
論文 参考訳(メタデータ) (2022-06-15T13:49:22Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
我々は、繊細な物体を操作する際に人間が採用するのと同じキネマティクス変調を2つの異なるロボットプラットフォームに転送する方法に焦点を当てる。
我々は、ロボットのエンドエフェクターが採用する速度プロファイルを、異なる特徴を持つ物体を輸送する際に人間が何をするかに触発されて調整する。
我々は、人体キネマティクスの例を用いて訓練され、それらを一般化し、新しい有意義な速度プロファイルを生成する、新しいジェネレーティブ・アドバイサル・ネットワークアーキテクチャを利用する。
論文 参考訳(メタデータ) (2022-03-29T15:03:05Z) - In-air Knotting of Rope using Dual-Arm Robot based on Deep Learning [8.365690203298966]
深層学習に基づく双腕二本指ロボットを用いて,ロープの空中結節を成功させた。
全ての対象状態に対応する適切なロボット動作のマニュアル記述を事前に作成することは困難である。
そこで我々は,ロボットに2つの深層ニューラルネットワークを訓練し,そのセンサモデレータから収集したデータに基づいてボクノットとオーバーハンドノットを行うよう指示するモデルを構築した。
論文 参考訳(メタデータ) (2021-03-17T02:11:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。