論文の概要: Body Gesture Recognition to Control a Social Robot
- arxiv url: http://arxiv.org/abs/2206.07538v1
- Date: Wed, 15 Jun 2022 13:49:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-16 23:17:47.381693
- Title: Body Gesture Recognition to Control a Social Robot
- Title(参考訳): 社会ロボット制御のための身体ジェスチャー認識
- Authors: Javier Laplaza, Joan Jaume Oliver, Ram\'on Romero, Alberto Sanfeliu
and Ana\'is Garrell
- Abstract要約: 本研究では,人間の身体を自然に利用してロボットと対話できるジェスチャー型言語を提案する。
ニューラルネットワークを用いた新しいジェスチャー検出モデルと、ネットワークをトレーニングするための身体ジェスチャーセットを実行する人間のカスタムデータセットを作成しました。
- 参考スコア(独自算出の注目度): 5.557794184787908
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we propose a gesture based language to allow humans to interact
with robots using their body in a natural way. We have created a new gesture
detection model using neural networks and a custom dataset of humans performing
a set of body gestures to train our network. Furthermore, we compare body
gesture communication with other communication channels to acknowledge the
importance of adding this knowledge to robots. The presented approach is
extensively validated in diverse simulations and real-life experiments with
non-trained volunteers. This attains remarkable results and shows that it is a
valuable framework for social robotics applications, such as human robot
collaboration or human-robot interaction.
- Abstract(参考訳): 本研究では,人間の身体を用いたロボットとの対話を自然に行うためのジェスチャーに基づく言語を提案する。
ニューラルネットワークを用いた新しいジェスチャー検出モデルと、ネットワークをトレーニングするための身体ジェスチャーセットを実行する人間のカスタムデータセットを作成しました。
さらに,この知識をロボットに追加することの重要性を認識するため,身体ジェスチャー通信を他のコミュニケーションチャネルと比較する。
提案手法は非訓練ボランティアによる多様なシミュレーションや実生活実験で広く検証されている。
これは目覚ましい結果となり、人間のロボットコラボレーションや人間とロボットの相互作用といった社会ロボティクス応用のための貴重なフレームワークであることが示される。
関連論文リスト
- Built Different: Tactile Perception to Overcome Cross-Embodiment Capability Differences in Collaborative Manipulation [1.9048510647598207]
触覚は、人間とロボットのアシスタントの間で暗黙のコミュニケーションを行う強力な手段である。
本稿では,触覚がロボットシステム間での身体間差異をいかに超越させるかを検討する。
本研究では,ロボットと人間が協調して宇宙空間で物体を操る,協調作業を可能にする方法を示す。
論文 参考訳(メタデータ) (2024-09-23T10:45:41Z) - Imitation of human motion achieves natural head movements for humanoid robots in an active-speaker detection task [2.8220015774219567]
頭の動きは社会的人間と人間の相互作用に不可欠である。
そこで本研究では,直型ヒューマノイドロボットの頭部運動生成に生成型AIパイプラインを用いた。
その結果,会話中の話者を積極的に追跡しながら,人間の頭部の動きを自然に模倣することに成功した。
論文 参考訳(メタデータ) (2024-07-16T17:08:40Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
本稿では,ロボットの動きに対する新しいディープラーニング手法を提案する。
本手法では,新しいロボットへの翻訳を容易にする,人間とロボットのペアデータを必要としない。
我々のモデルは、効率と精度の観点から、人間とロボットの類似性に関する既存の研究よりも優れています。
論文 参考訳(メタデータ) (2023-09-11T08:55:04Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - CoGrasp: 6-DoF Grasp Generation for Human-Robot Collaboration [0.0]
そこで我々は,人間を意識したロボットグリップを生成する,CoGraspと呼ばれる新しいディープニューラルネットワーク方式を提案する。
実際のロボット実験では,安定グリップの生成において約88%の成功率を達成した。
我々のアプローチは、安全で自然で社会的に認識された人間ロボットオブジェクトのコグラスピング体験を可能にします。
論文 参考訳(メタデータ) (2022-10-06T19:23:25Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
本研究では,2つのロボットによるコミュニケーション意図による物体操作の知覚について検討する。
ロボットの動きを設計し,物体の搬送時に注意を喚起するか否かを判断した。
論文 参考訳(メタデータ) (2022-08-03T13:26:52Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
我々は、繊細な物体を操作する際に人間が採用するのと同じキネマティクス変調を2つの異なるロボットプラットフォームに転送する方法に焦点を当てる。
我々は、ロボットのエンドエフェクターが採用する速度プロファイルを、異なる特徴を持つ物体を輸送する際に人間が何をするかに触発されて調整する。
我々は、人体キネマティクスの例を用いて訓練され、それらを一般化し、新しい有意義な速度プロファイルを生成する、新しいジェネレーティブ・アドバイサル・ネットワークアーキテクチャを利用する。
論文 参考訳(メタデータ) (2022-03-29T15:03:05Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
本稿では,空間コンピューティングを応用し,新しいロボットのユースケースを実現するためのロボットシステムについて述べる。
空間コンピューティングとエゴセントリックな感覚を複合現実感デバイスに組み合わせることで、人間の行動をキャプチャして理解し、それらを空間的な意味を持つ行動に変換することができる。
論文 参考訳(メタデータ) (2022-02-03T10:04:26Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
本稿では,REMPを用いた短時間キャリブレーションにより,ロボットが到達できると考える非専門家と地道とのギャップを効果的に埋めることができることを示す。
この校正手順は,ユーザ認識の向上だけでなく,人間とロボットのコラボレーションの効率化にも寄与することを示す。
論文 参考訳(メタデータ) (2021-03-06T09:14:30Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
本稿では,人間とロボットのコラボレーションにおいて,人間のようなコミュニケーションを実現するための新しい説明可能なAI(XAI)フレームワークを提案する。
ロボットは、人間のユーザの階層的なマインドモデルを構築し、コミュニケーションの一形態として自身のマインドの説明を生成する。
その結果,提案手法はロボットの協調動作性能とユーザ認識を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2020-07-24T23:35:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。