論文の概要: Data-Efficient Meningioma Segmentation via Implicit Spatiotemporal Mixing and Sim2Real Semantic Injection
- arxiv url: http://arxiv.org/abs/2601.17031v1
- Date: Mon, 19 Jan 2026 09:11:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-27 15:23:07.009042
- Title: Data-Efficient Meningioma Segmentation via Implicit Spatiotemporal Mixing and Sim2Real Semantic Injection
- Title(参考訳): 急激な時空間混合とSim2Real Semantic Injectionによる髄膜腫分画
- Authors: Yunhao Xu, Fuquan Zong, Yexuan Xing, Chulong Zhang, Guang Yang, Shilong Yang, Xiaokun Liang, Juan Yu,
- Abstract要約: 本研究では,空間的多様体展開と意味的オブジェクト注入を統合した新しい二重拡張フレームワークを提案する。
我々のフレームワークは,nnU-NetやU-Mambaといった最先端モデルのデータ効率とロバスト性を大幅に向上させることを示す。
- 参考スコア(独自算出の注目度): 6.992254817538211
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of medical image segmentation is increasingly defined by the efficiency of data utilization rather than merely the volume of raw data. Accurate segmentation, particularly for complex pathologies like meningiomas, demands that models fully exploit the latent information within limited high-quality annotations. To maximize the value of existing datasets, we propose a novel dual-augmentation framework that synergistically integrates spatial manifold expansion and semantic object injection. Specifically, we leverage Implicit Neural Representations (INR) to model continuous velocity fields. Unlike previous methods, we perform linear mixing on the integrated deformation fields, enabling the efficient generation of anatomically plausible variations by interpolating within the deformation space. This approach allows for the extensive exploration of structural diversity from a small set of anchors. Furthermore, we introduce a Sim2Real lesion injection module. This module constructs a high-fidelity simulation domain by transplanting lesion textures into healthy anatomical backgrounds, effectively bridging the gap between synthetic augmentation and real-world pathology. Comprehensive experiments on a hybrid dataset demonstrate that our framework significantly enhances the data efficiency and robustness of state-of-the-art models, including nnU-Net and U-Mamba, offering a potent strategy for high-performance medical image analysis with limited annotation budgets.
- Abstract(参考訳): 医用画像セグメンテーションの性能は、単に生データ量ではなく、データ利用の効率によってますます定義される。
正確なセグメンテーション、特に髄膜腫のような複雑な病理は、モデルが限定された高品質のアノテーションの中で潜伏した情報を完全に活用することを要求する。
既存のデータセットの価値を最大化するために,空間的多様体展開と意味的オブジェクト注入を相乗的に統合する新しい二重拡張フレームワークを提案する。
具体的には、インプリシットニューラルネットワーク(INR)を用いて連続速度場をモデル化する。
従来の方法とは異なり, 積分変形場上で線形混合を行い, 変形空間内を補間することにより, 解剖学的に妥当な変動を効率的に生成することができる。
このアプローチは、小さなアンカーの集合から構造的多様性の広範な探索を可能にする。
さらに,Sim2Real病巣注入モジュールを導入する。
本発明のモジュールは、病変のテクスチャーを健康な解剖学的背景に移植し、合成増強と現実世界の病態のギャップを効果的に埋めることにより、高忠実度シミュレーションドメインを構築する。
ハイブリッドデータセットに関する総合的な実験により、我々のフレームワークは、nnU-NetやU-Mambaを含む最先端モデルのデータ効率と堅牢性を著しく向上し、アノテーション予算に制限のある高性能な医用画像解析のための強力な戦略を提供することを示した。
関連論文リスト
- GANet-Seg: Adversarial Learning for Brain Tumor Segmentation with Hybrid Generative Models [1.0456203870202954]
この研究は、事前訓練されたGANとUnetアーキテクチャを利用した脳腫瘍セグメンテーションのための新しいフレームワークを導入する。
グローバルな異常検出モジュールと改良されたマスク生成ネットワークを組み合わせることで,腫瘍感受性領域を正確に同定する。
マルチモーダルMRIデータと合成画像拡張を用いて、ロバスト性を改善し、限られたアノテートデータセットの課題に対処する。
論文 参考訳(メタデータ) (2025-06-26T13:28:09Z) - High-Fidelity Scientific Simulation Surrogates via Adaptive Implicit Neural Representations [51.90920900332569]
入射神経表現(INR)は空間的に構造化されたデータをモデリングするためのコンパクトで連続的なフレームワークを提供する。
近年のアプローチでは、剛性幾何学的構造に沿った付加的な特徴を導入することでこの問題に対処している。
機能適応型INR(FA-INR)を提案する。
論文 参考訳(メタデータ) (2025-06-07T16:45:17Z) - Enhancing SAM with Efficient Prompting and Preference Optimization for Semi-supervised Medical Image Segmentation [30.524999223901645]
完全教師なし方式で生成されるアノテーション効率のよいプロンプトを利用するSAM(Segment Anything Model)フレームワークを提案する。
我々は、モデルが高忠実度セグメンテーションを生成できるように最適なポリシーを設計するために、直接選好最適化手法を採用する。
X線, 超音波, 腹部CTなど多彩な領域にわたる肺分節, 乳房腫瘍分節, 臓器分節などのタスクにおける我々のフレームワークの最先端性能は, 低アノテーションデータシナリオにおけるその有効性を正当化するものである。
論文 参考訳(メタデータ) (2025-03-06T17:28:48Z) - MRGen: Segmentation Data Engine for Underrepresented MRI Modalities [59.61465292965639]
稀ながら臨床的に重要な画像モダリティのための医用画像分割モデルの訓練は、注釈付きデータの不足により困難である。
本稿では,データ合成における生成モデルの利用について検討する。
本稿では,テキストプロンプトとセグメンテーションマスクを条件とした医用画像合成のためのデータエンジンMRGenを提案する。
論文 参考訳(メタデータ) (2024-12-04T16:34:22Z) - 3D MRI Synthesis with Slice-Based Latent Diffusion Models: Improving Tumor Segmentation Tasks in Data-Scarce Regimes [2.8498944632323755]
本稿では,ボリュームデータ生成の複雑さに対処するスライスに基づく遅延拡散アーキテクチャを提案する。
この手法は,医療用画像と関連するマスクの同時分布モデルを拡張し,データスカース体制下での同時生成を可能にする。
構造は, 大きさ, 形状, 相対位置などの腫瘍特性によって調節できるため, 腫瘍の多様性は様々である。
論文 参考訳(メタデータ) (2024-06-08T09:53:45Z) - Memory-efficient High-resolution OCT Volume Synthesis with Cascaded Amortized Latent Diffusion Models [48.87160158792048]
本稿では,高分解能CTボリュームをメモリ効率よく合成できるCA-LDM(Cascaded amortized Latent diffusion model)を提案する。
公開高解像度OCTデータセットを用いた実験により、我々の合成データは、既存の手法の能力を超越した、現実的な高解像度かつグローバルな特徴を持つことが示された。
論文 参考訳(メタデータ) (2024-05-26T10:58:22Z) - Adaptive Affinity-Based Generalization For MRI Imaging Segmentation Across Resource-Limited Settings [1.5703963908242198]
本稿では,適応親和性に基づく蒸留とカーネルベースの蒸留をシームレスに組み合わせた,新しい関係に基づく知識フレームワークを提案する。
革新的アプローチを検証するために,我々は公開されている複数ソースのMRIデータについて実験を行った。
論文 参考訳(メタデータ) (2024-04-03T13:35:51Z) - Synthetic Data for Robust Stroke Segmentation [0.0]
ニューロイメージングにおける病変のセグメンテーションに対する現在のディープラーニングベースのアプローチは、高解像度の画像と広範囲な注釈付きデータに依存することが多い。
本稿では,脳卒中病変のセグメンテーションに適した新しい合成データフレームワークを提案する。
我々のアプローチは、正常組織と病理組織の両方にまたがるセグメンテーションを促進するために、健康なデータセットと脳卒中データセットからラベルマップでモデルを訓練する。
論文 参考訳(メタデータ) (2024-04-02T13:42:29Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
大腸内視鏡検査は臨床診断や治療に不可欠である。
注釈付きデータの不足は、既存の手法の有効性と一般化を制限する。
本稿では, 下流作業に有用な大腸内視鏡画像を生成するために, 適応Refinement Semantic Diffusion Model (ArSDM)を提案する。
論文 参考訳(メタデータ) (2023-09-03T07:55:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。