論文の概要: CaseFacts: A Benchmark for Legal Fact-Checking and Precedent Retrieval
- arxiv url: http://arxiv.org/abs/2601.17230v1
- Date: Fri, 23 Jan 2026 23:41:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-27 15:23:07.4335
- Title: CaseFacts: A Benchmark for Legal Fact-Checking and Precedent Retrieval
- Title(参考訳): CaseFacts: 法律上のFact-CheckingとPrecedent Retrievalのベンチマーク
- Authors: Akshith Reddy Putta, Jacob Devasier, Chengkai Li,
- Abstract要約: CaseFactsは、アメリカ合衆国最高裁判所の判例に対する法的主張を検証するためのベンチマークである。
データセットは、Supported、Refuted、Overruledに分類される6,294のクレームで構成されている。
- 参考スコア(独自算出の注目度): 5.305110876082343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated Fact-Checking has largely focused on verifying general knowledge against static corpora, overlooking high-stakes domains like law where truth is evolving and technically complex. We introduce CaseFacts, a benchmark for verifying colloquial legal claims against U.S. Supreme Court precedents. Unlike existing resources that map formal texts to formal texts, CaseFacts challenges systems to bridge the semantic gap between layperson assertions and technical jurisprudence while accounting for temporal validity. The dataset consists of 6,294 claims categorized as Supported, Refuted, or Overruled. We construct this benchmark using a multi-stage pipeline that leverages Large Language Models (LLMs) to synthesize claims from expert case summaries, employing a novel semantic similarity heuristic to efficiently identify and verify complex legal overrulings. Experiments with state-of-the-art LLMs reveal that the task remains challenging; notably, augmenting models with unrestricted web search degrades performance compared to closed-book baselines due to the retrieval of noisy, non-authoritative precedents. We release CaseFacts to spur research into legal fact verification systems.
- Abstract(参考訳): Automated Fact-Checkingは主に静的コーパスに対する一般的な知識の検証に重点を置いており、真理が進化し技術的に複雑である法則のような高度な領域を見下ろしている。
我々は、合衆国最高裁判所の判例に対する口頭的法的主張を検証するためのベンチマークであるケースファクトスを紹介した。
形式的なテキストを形式的なテキストにマッピングする既存のリソースとは異なり、CaseFactsは、時間的妥当性を考慮しながら、レイパーソンの主張と技術的な不合理性の間のセマンティックなギャップを埋めるためにシステムに挑戦する。
データセットは、Supported、Refuted、Overruledに分類される6,294のクレームで構成されている。
本稿では,Large Language Models (LLMs) を利用した多段階パイプラインを用いて,専門事例要約からのクレームを合成し,複雑な法的オーバーラリングを効果的に識別し検証するために,新しい意味的類似性ヒューリスティックを用いて,このベンチマークを構築した。
最新のLLMによる実験では、この作業は依然として困難なままであり、特に、制限のないWebサーチによるモデルの強化は、ノイズの多い非権威的な前例の検索によって、クローズドブックのベースラインよりも性能を低下させる。
我々は、法的事実検証システムの研究を促進するために、CaseFactsをリリースする。
関連論文リスト
- AppellateGen: A Benchmark for Appellate Legal Judgment Generation [30.9030336647868]
7,351対のケースペアからなる第2のインスタンス法定判断生成のためのベンチマークであるAppellateGenを紹介する。
このタスクは、最初の評決と明らかな更新について推論することで、法的に拘束力のある判断を起草するモデルを必要とする。
本稿では,SOPに基づく法的マルチエージェントシステム(SLMAS)を提案し,その生成過程を個別の課題識別,検索,起草の段階に分解する。
論文 参考訳(メタデータ) (2026-01-04T02:15:17Z) - ClaimGen-CN: A Large-scale Chinese Dataset for Legal Claim Generation [56.79698529022327]
法的な主張は、事件における原告の要求を言及し、法的理由づけと事件解決を導くのに不可欠である。
本稿では,その事例の事実に基づく法的クレーム生成の問題について考察する。
われわれは,中国法定クレーム生成タスクの最初のデータセットであるClaymGen-CNを構築した。
論文 参考訳(メタデータ) (2025-08-24T07:19:25Z) - A Law Reasoning Benchmark for LLM with Tree-Organized Structures including Factum Probandum, Evidence and Experiences [76.73731245899454]
本稿では,階層的なファクトラム,証拠,暗黙的な経験に富む透明な法理推論スキーマを提案する。
このスキーマにインスパイアされた課題は、テキストのケース記述を取り込み、最終決定を正当化する階層構造を出力する。
このベンチマークは、Intelligent Courtにおける透明で説明可能なAI支援法推論の道を開く」。
論文 参考訳(メタデータ) (2025-03-02T10:26:54Z) - AnnoCaseLaw: A Richly-Annotated Dataset For Benchmarking Explainable Legal Judgment Prediction [56.797874973414636]
AnnoCaseLawは、アメリカ合衆国控訴裁判所の無視事件を慎重に注釈付けした471のデータセットである。
我々のデータセットは、より人間らしく説明可能な法的な判断予測モデルの基礎となる。
その結果、LJPは依然として厳しい課題であり、法的な前例の適用は特に困難であることが示されている。
論文 参考訳(メタデータ) (2025-02-28T19:14:48Z) - LawLLM: Law Large Language Model for the US Legal System [43.13850456765944]
我々は,米国法域に特化して設計されたマルチタスクモデルであるLawLLM(Law Large Language Model)を紹介する。
類似症例検索(SCR)、PCR(Precedent Case Recommendation)、LJP(Lawal Judgment Prediction)においてLawLLMが優れている
そこで本研究では,各タスクに対して,生の法定データをトレーニング可能な形式に変換する,カスタマイズされたデータ前処理手法を提案する。
論文 参考訳(メタデータ) (2024-07-27T21:51:30Z) - Learning Interpretable Legal Case Retrieval via Knowledge-Guided Case Reformulation [22.85652668826498]
本稿では,大言語モデル(LLM)に基づく法的な知識誘導型事例修正手法であるKELLERを紹介する。
犯罪や法律記事に関する専門的な法的知識を取り入れることで、大規模な言語モデルにより、原訴訟を犯罪の簡潔なサブファクトに正確に修正することができる。
論文 参考訳(メタデータ) (2024-06-28T08:59:45Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval [16.29803062332164]
本稿では,大規模言語モデルによる専門家による関連判断の生成を支援する,数ショットのアプローチを提案する。
提案手法は,人間のアノテータのワークフローを模倣して,判断過程をいくつかの段階に分解する。
また、解釈可能なデータラベリングを保証し、関連性評価プロセスにおける透明性と明確性を提供します。
論文 参考訳(メタデータ) (2024-03-27T09:46:56Z) - MUSER: A Multi-View Similar Case Retrieval Dataset [65.36779942237357]
類似事例検索(SCR)は、司法公正の促進に重要な役割を果たす代表的法的AIアプリケーションである。
既存のSCRデータセットは、ケース間の類似性を判断する際にのみ、事実記述セクションにフォーカスする。
本稿では,多視点類似度測定に基づく類似事例検索データセットMと,文レベル法定要素アノテーションを用いた包括的法定要素を提案する。
論文 参考訳(メタデータ) (2023-10-24T08:17:11Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。