論文の概要: LURE-RAG: Lightweight Utility-driven Reranking for Efficient RAG
- arxiv url: http://arxiv.org/abs/2601.19535v1
- Date: Tue, 27 Jan 2026 12:26:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-04 13:40:03.805324
- Title: LURE-RAG: Lightweight Utility-driven Reranking for Efficient RAG
- Title(参考訳): LURE-RAG:高効率RAGのための軽量ユーティリティ駆動型リグレード
- Authors: Manish Chandra, Debasis Ganguly, Iadh Ounis,
- Abstract要約: 効率的なRAGのための軽量ユーティリティ駆動型リグレードを提案する。
効率的なLambdaベースのリランカでブラックボックスレトリバーを拡張する。
競争力があり、最先端の高密度ニューラルネットワークの97-98%に達する。
- 参考スコア(独自算出の注目度): 15.963908827464296
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most conventional Retrieval-Augmented Generation (RAG) pipelines rely on relevance-based retrieval, which often misaligns with utility -- that is, whether the retrieved passages actually improve the quality of the generated text specific to a downstream task such as question answering or query-based summarization. The limitations of existing utility-driven retrieval approaches for RAG are that, firstly, they are resource-intensive typically requiring query encoding, and that secondly, they do not involve listwise ranking loss during training. The latter limitation is particularly critical, as the relative order between documents directly affects generation in RAG. To address this gap, we propose Lightweight Utility-driven Reranking for Efficient RAG (LURE-RAG), a framework that augments any black-box retriever with an efficient LambdaMART-based reranker. Unlike prior methods, LURE-RAG trains the reranker with a listwise ranking loss guided by LLM utility, thereby directly optimizing the ordering of retrieved documents. Experiments on two standard datasets demonstrate that LURE-RAG achieves competitive performance, reaching 97-98% of the state-of-the-art dense neural baseline, while remaining efficient in both training and inference. Moreover, its dense variant, UR-RAG, significantly outperforms the best existing baseline by up to 3%.
- Abstract(参考訳): ほとんどの従来のRAGパイプラインは、関連ベースの検索に依存しており、しばしばユーティリティと誤解される。つまり、検索されたパスが、質問応答やクエリベースの要約のような下流タスクに特有の生成したテキストの品質を実際に改善するかどうかである。
RAGの既存のユーティリティ駆動検索アプローチの限界は、第一に、リソース集約的なクエリエンコーディングを必要とし、第二に、トレーニング中にリストワイズランキングの損失を伴わないことである。
文書間の相対的な順序がRAGの生成に直接影響するため、後者の制限は特に重要である。
このギャップに対処するために、効率的なLambdaMARTベースのリランカでブラックボックスレトリバーを拡張するフレームワークであるLURE-RAG(Lightweight Utility-driven Re rank for Efficient RAG)を提案する。
従来の方法とは異なり、LURE-RAGはLLMユーティリティによって案内されたリストワイドランキングの損失で再ランカを訓練し、取得した文書の注文を直接最適化する。
2つの標準データセットの実験では、LURE-RAGは、最先端の高密度ニューラルネットワークの97-98%に到達し、トレーニングと推論の両方で効率的であることを示す。
さらに、その密度の強いUR-RAGは、最も優れたベースラインを最大3%上回っている。
関連論文リスト
- Rethinking On-policy Optimization for Query Augmentation [49.87723664806526]
本稿では,様々なベンチマークにおいて,プロンプトベースとRLベースのクエリ拡張の最初の体系的比較を示す。
そこで我々は,検索性能を最大化する擬似文書の生成を学習する,新しいハイブリッド手法 On-policy Pseudo-document Query Expansion (OPQE) を提案する。
論文 参考訳(メタデータ) (2025-10-20T04:16:28Z) - REFRAG: Rethinking RAG based Decoding [67.4862300145604]
REFRAGは効率的なデコードフレームワークで、RAGアプリケーションの遅延を圧縮し、感知し、拡張し、改善する。
本稿では,RAG,マルチターン会話,長期文書要約など,多種多様な長文タスクを対象としたREFRAGの厳密な検証を行う。
論文 参考訳(メタデータ) (2025-09-01T03:31:44Z) - RAG in the Wild: On the (In)effectiveness of LLMs with Mixture-of-Knowledge Retrieval Augmentation [45.679455112940175]
Retrieval-augmented Generation (RAG)は、推論時に取得した外部知識を統合することにより、大規模言語モデル(LLM)を強化する。
我々は,知識の混合を伴う大規模データストアであるMassiveDSを用いてRAGシステムを評価し,限界点を特定した。
論文 参考訳(メタデータ) (2025-07-26T20:57:24Z) - LTRR: Learning To Rank Retrievers for LLMs [53.285436927963865]
ルーティングベースのRAGシステムは、単一リトリバーベースのシステムよりも優れていることを示す。
パフォーマンス向上は、特にAnswer Correctness(AC)メトリックでトレーニングされたモデルで顕著である。
SIGIR 2025 LiveRAG チャレンジの一環として,提案システムを用いて提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2025-06-16T17:53:18Z) - Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [95.85537087475882]
既存のアプローチは、大規模言語モデル(LLM)の固有の知識を過小評価している。
本稿では,選択検索と知識の言語化を結びつける新しいフレームワークであるSelf-Routing RAGを提案する。
SR-RAGは検索回数を29%削減し、性能は5.1%向上した。
論文 参考訳(メタデータ) (2025-04-01T17:59:30Z) - MAIN-RAG: Multi-Agent Filtering Retrieval-Augmented Generation [34.66546005629471]
大規模言語モデル(LLM)は、様々な自然言語処理タスクに不可欠なツールであるが、時代遅れや誤った情報の生成に悩まされることが多い。
Retrieval-Augmented Generation (RAG)は、外部のリアルタイム情報検索をLLM応答に組み込むことでこの問題に対処する。
この問題に対処するため,マルチエージェントフィルタ検索検索生成(MAIN-RAG)を提案する。
MAIN-RAGはトレーニング不要なRAGフレームワークで、複数のLCMエージェントを利用して検索した文書のフィルタリングとスコア付けを行う。
論文 参考訳(メタデータ) (2024-12-31T08:07:26Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - FIRST: Faster Improved Listwise Reranking with Single Token Decoding [56.727761901751194]
まず、第1生成識別子の出力ロジットを活用して、候補のランク付け順序を直接取得する新しいリストワイズLLMリグレードアプローチであるFIRSTを紹介する。
実験結果から、BEIRベンチマークの利得により、FIRSTはロバストなランキング性能を維持しつつ、推論を50%高速化することが示された。
以上の結果から,LLMリランカーはクロスエンコーダに比べて強い蒸留信号を提供できることが示唆された。
論文 参考訳(メタデータ) (2024-06-21T21:27:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。