論文の概要: Probabilistic Sensing: Intelligence in Data Sampling
- arxiv url: http://arxiv.org/abs/2601.19953v1
- Date: Tue, 27 Jan 2026 00:41:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-29 15:46:06.60525
- Title: Probabilistic Sensing: Intelligence in Data Sampling
- Title(参考訳): 確率的センシング - データサンプリングにおけるインテリジェンス
- Authors: Ibrahim Albulushi, Saleh Bunaiyan, Suraj S. Cheema, Hesham ElSawy, Feras Al-Dirini,
- Abstract要約: 本稿では,そのような決定を確率論的に行うことが可能なセンシングパラダイムを提案する。
システムの応答時間はマイクロ秒の順であり、サブサンプリングレートの応答時間制限を克服する。
- 参考スコア(独自算出の注目度): 3.7037186045091453
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Extending the intelligence of sensors to the data-acquisition process - deciding whether to sample or not - can result in transformative energy-efficiency gains. However, making such a decision in a deterministic manner involves risk of losing information. Here we present a sensing paradigm that enables making such a decision in a probabilistic manner. The paradigm takes inspiration from the autonomous nervous system and employs a probabilistic neuron (p-neuron) driven by an analog feature extraction circuit. The response time of the system is on the order of microseconds, over-coming the sub-sampling-rate response time limit and enabling real-time intelligent autonomous activation of data-sampling. Validation experiments on active seismic survey data demonstrate lossless probabilistic data acquisition, with a normalized mean squared error of 0.41%, and 93% saving in the active operation time of the system and the number of generated samples.
- Abstract(参考訳): センサーのインテリジェンスをデータ取得プロセス(サンプリングするかどうかを決定する)に拡張することで、変換エネルギー効率が向上する。
しかし、そのような決定を決定論的に行うには、情報を失うリスクが伴う。
本稿では,そのような決定を確率論的に行うことが可能なセンシングパラダイムを提案する。
このパラダイムは自律神経系からインスピレーションを受け、アナログ特徴抽出回路によって駆動される確率ニューロン(p-ニューロン)を用いる。
システムの応答時間はマイクロ秒の順で、サブサンプリングレートの応答時間制限を克服し、リアルタイムのインテリジェントなデータサンプリングのアクティベートを可能にする。
能動地震探査データに対する検証実験では, 正常化平均2乗誤差0.41%, 93%の有効動作時間と生成サンプル数で, 損失のない確率的データ取得が示されている。
関連論文リスト
- From Entropy to Epiplexity: Rethinking Information for Computationally Bounded Intelligence [91.54446789584826]
エピプレキシティ(英: Epiplexity)とは、計算的に境界付けられた観測者がデータから学べるものを捉える情報の形式化である。
計算によってどのように情報を生成するか、データの順序にどのように依存するか、そしてモデリングがデータ生成プロセス自体よりも複雑なプログラムを生成する可能性を示す。
論文 参考訳(メタデータ) (2026-01-06T18:04:03Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
量子回帰に基づくタスクネットワークのアンサンブルを用いて不確実性を推定する新しい手法であるQuantile Sub-Ensemblesを提案する。
提案手法は,高い損失率に頑健な高精度な計算法を生成するだけでなく,非生成モデルの高速な学習により,計算効率も向上する。
論文 参考訳(メタデータ) (2023-12-03T05:52:30Z) - Expressive probabilistic sampling in recurrent neural networks [4.3900330990701235]
本稿では, 任意の確率分布から, 出力単位を分離した再帰型ニューラルネットワークの発火速度のダイナミクスをサンプリングできることを示す。
本稿では, RSNがLangevinサンプリングを実装しているような繰り返しおよび出力重みを求める, スコアマッチングに基づく効率的なトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-08-22T22:20:39Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
拡散モデルを用いて予測を行い,カオス力学系に対する不確かさの定量化が可能であることを示す。
本研究では,雑音レベルが低下するにつれて真の分布に収束する条件付きスコア関数の確率的近似法を開発する。
推論時に非線形ユーザ定義イベントを条件付きでサンプリングすることができ、分布の尾部からサンプリングした場合でもデータ統計と一致させることができる。
論文 参考訳(メタデータ) (2023-06-13T03:42:03Z) - Informed Down-Sampled Lexicase Selection: Identifying productive
training cases for efficient problem solving [40.683810697551166]
遺伝的プログラミング(GP)は、しばしば大きなトレーニングセットを使用し、選択中にすべてのトレーニングケースですべての個人を評価する必要がある。
ランダムダウンサンプリングレキシケースの選択は、トレーニングケースのランダムなサブセットのみの個人を評価し、同じプログラム実行量でより多くの個人を探索できるようにする。
Informed Down-Sampled Lexicase Selectionでは、人口統計を用いて、より明瞭で情報的な訓練ケースを含むダウンサンプルを構築します。
論文 参考訳(メタデータ) (2023-01-04T08:47:18Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
我々はDriPPと呼ばれる新しい統計点過程モデルを開発する。
我々は、このモデルのパラメータを推定するために、高速で原理化された予測最大化(EM)アルゴリズムを導出する。
標準MEGデータセットの結果から,我々の手法が事象関連ニューラルレスポンスを明らかにすることが示された。
論文 参考訳(メタデータ) (2021-12-08T13:07:21Z) - Cross-Validation and Uncertainty Determination for Randomized Neural
Networks with Applications to Mobile Sensors [0.0]
極端学習マシンは、限られたコンピュータリソースとグリーン機械学習の下で教師付き学習を行うための魅力的で効率的な方法を提供する。
このようなネットワークと回帰手法による教師あり学習について,一般化と予測誤差の整合性および境界性の観点から考察した。
論文 参考訳(メタデータ) (2021-01-06T12:28:06Z) - Efficient Inference of Flexible Interaction in Spiking-neuron Networks [41.83710212492543]
非線形ホークス法を用いて、ニューロン間の興奮的または抑制的な相互作用をモデル化する。
提案アルゴリズムは, 相互作用の時間的ダイナミクスを推定し, ニューラルスパイク列の根底にある機能的接続を明らかにする。
論文 参考訳(メタデータ) (2020-06-23T09:10:30Z) - Variational inference formulation for a model-free simulation of a
dynamical system with unknown parameters by a recurrent neural network [8.616180927172548]
本研究では,事前知識のない未知パラメータを持つ力学系の「モデルフリー」シミュレーションを提案する。
ディープラーニングモデルは,非線形時間行進演算子と未知パラメータの影響を時系列データセットから共同学習することを目的としている。
提案したディープラーニングモデルは,乱数パラメータの次元を正確に同定し,複雑な時系列データの表現を学習することができる。
論文 参考訳(メタデータ) (2020-03-02T20:57:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。