論文の概要: Variational inference formulation for a model-free simulation of a
dynamical system with unknown parameters by a recurrent neural network
- arxiv url: http://arxiv.org/abs/2003.01184v2
- Date: Fri, 26 Feb 2021 17:20:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 04:14:03.791404
- Title: Variational inference formulation for a model-free simulation of a
dynamical system with unknown parameters by a recurrent neural network
- Title(参考訳): リカレントニューラルネットワークによる未知パラメータを持つ力学系のモデルフリーシミュレーションのための変分推論定式化
- Authors: Kyongmin Yeo, Dylan E. C. Grullon, Fan-Keng Sun, Duane S. Boning,
Jayant R. Kalagnanam
- Abstract要約: 本研究では,事前知識のない未知パラメータを持つ力学系の「モデルフリー」シミュレーションを提案する。
ディープラーニングモデルは,非線形時間行進演算子と未知パラメータの影響を時系列データセットから共同学習することを目的としている。
提案したディープラーニングモデルは,乱数パラメータの次元を正確に同定し,複雑な時系列データの表現を学習することができる。
- 参考スコア(独自算出の注目度): 8.616180927172548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a recurrent neural network for a "model-free" simulation of a
dynamical system with unknown parameters without prior knowledge. The deep
learning model aims to jointly learn the nonlinear time marching operator and
the effects of the unknown parameters from a time series dataset. We assume
that the time series data set consists of an ensemble of trajectories for a
range of the parameters. The learning task is formulated as a statistical
inference problem by considering the unknown parameters as random variables. A
latent variable is introduced to model the effects of the unknown parameters,
and a variational inference method is employed to simultaneously train
probabilistic models for the time marching operator and an approximate
posterior distribution for the latent variable. Unlike the classical
variational inference, where a factorized distribution is used to approximate
the posterior, we employ a feedforward neural network supplemented by an
encoder recurrent neural network to develop a more flexible probabilistic
model. The approximate posterior distribution makes an inference on a
trajectory to identify the effects of the unknown parameters. The time marching
operator is approximated by a recurrent neural network, which takes a latent
state sampled from the approximate posterior distribution as one of the input
variables, to compute the time evolution of the probability distribution
conditioned on the latent variable. In the numerical experiments, it is shown
that the proposed variational inference model makes a more accurate simulation
compared to the standard recurrent neural networks. It is found that the
proposed deep learning model is capable of correctly identifying the dimensions
of the random parameters and learning a representation of complex time series
data.
- Abstract(参考訳): 本稿では,未知のパラメータを持つ力学系の「モデルフリー」シミュレーションのための繰り返しニューラルネットワークを提案する。
ディープラーニングモデルは,非線形時間行進演算子と未知パラメータの影響を時系列データセットから共同学習することを目的としている。
時系列データセットは、パラメータの範囲に対する軌道のアンサンブルで構成されていると仮定する。
未知パラメータを確率変数として考慮し、統計的推論問題として定式化する。
未知パラメータの効果をモデル化するために潜在変数を導入し、時間マーチング演算子の確率モデルと潜在変数の近似後続分布を同時に訓練するために変分推論法を用いる。
因数分布を用いて後部を近似する古典的変分推論とは異なり、エンコーダ繰り返しニューラルネットワークによって補足されたフィードフォワードニューラルネットワークを用いて、より柔軟な確率的モデルを構築する。
近似した後続分布は、未知のパラメータの影響を特定するために軌道上で推論する。
時間マーチング演算子は、入力変数の1つとして近似後分布からサンプリングされた潜在状態をとり、潜在変数に条件付けられた確率分布の時間発展を計算するリカレントニューラルネットワークによって近似される。
数値実験では,提案する変分推論モデルが,標準リカレントニューラルネットワークよりも正確なシミュレーションを行うことが示された。
提案したディープラーニングモデルは,乱数パラメータの次元を正確に同定し,複雑な時系列データの表現を学習することができる。
関連論文リスト
- Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Neural ODEs with Irregular and Noisy Data [8.349349605334316]
ノイズや不規則なサンプル測定を用いて微分方程式を学習する手法について議論する。
我々の方法論では、ディープニューラルネットワークとニューラル常微分方程式(ODE)アプローチの統合において、大きな革新が見られる。
ベクトル場を記述するモデルを学習するためのフレームワークは,雑音測定において非常に効果的である。
論文 参考訳(メタデータ) (2022-05-19T11:24:41Z) - Learning and Inference in Sparse Coding Models with Langevin Dynamics [3.0600309122672726]
本稿では確率的潜在変数モデルで推論と学習が可能なシステムについて述べる。
ランゲヴィン力学を用いて潜伏変数を推論する連続時間方程式を導出することにより、スパース符号化モデルのこのアイデアを実証する。
ランゲヴィン力学は、L1ノルムが小さいのに対して、潜伏変数をゼロにすることを推奨する'L0スパース'系において、後続分布からサンプリングする効率的な手順をもたらすことを示す。
論文 参考訳(メタデータ) (2022-04-23T23:16:47Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Stochastic Recurrent Neural Network for Multistep Time Series
Forecasting [0.0]
我々は、時系列予測のための繰り返しニューラルネットワークの適応を提案するために、深部生成モデルと状態空間モデルの概念の進歩を活用する。
私たちのモデルは、すべての関連情報が隠された状態でカプセル化されるリカレントニューラルネットワークのアーキテクチャ的な動作を保ち、この柔軟性により、モデルはシーケンシャルモデリングのために任意のディープアーキテクチャに簡単に統合できます。
論文 参考訳(メタデータ) (2021-04-26T01:43:43Z) - System identification using Bayesian neural networks with nonparametric
noise models [0.0]
離散時間非線形ランダムダイナミクス系におけるシステム同定のための非パラメトリックアプローチを提案する。
後部推論用ギブスサンプリング器を提案し, シミュレーションおよび実時間時系列でその有効性を示した。
論文 参考訳(メタデータ) (2021-04-25T09:49:50Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Probabilistic solution of chaotic dynamical system inverse problems
using Bayesian Artificial Neural Networks [0.0]
カオスシステムの逆問題は数値的に困難である。
モデルパラメータの小さな摂動は、推定された前方軌道において非常に大きな変化を引き起こす可能性がある。
ビザレニューラルネットワークは、モデルに同時に適合し、モデルのパラメータの不確実性を推定するために使用することができる。
論文 参考訳(メタデータ) (2020-05-26T20:35:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。