論文の概要: Cheap2Rich: A Multi-Fidelity Framework for Data Assimilation and System Identification of Multiscale Physics -- Rotating Detonation Engines
- arxiv url: http://arxiv.org/abs/2601.20295v1
- Date: Wed, 28 Jan 2026 06:35:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-29 15:46:06.795159
- Title: Cheap2Rich: A Multi-Fidelity Framework for Data Assimilation and System Identification of Multiscale Physics -- Rotating Detonation Engines
- Title(参考訳): Cheap2Rich: マルチスケール物理のデータの同化とシステム同定のための多要素フレームワーク - 回転デトネーションエンジン
- Authors: Yuxuan Bao, Jan Zajac, Megan Powers, Venkat Raman, J. Nathan Kutz,
- Abstract要約: Cheap2Richは、スパースセンサー履歴から高忠実度状態空間を再構成するマルチスケールデータ同化フレームワークである。
回転起爆エンジン(RDE)の性能実証
その結果,複雑なマルチスケールシステムにおけるデータ同化とシステム識別のための汎用多機能フレームワークが注目されている。
- 参考スコア(独自算出の注目度): 1.8796659304823702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bridging the sim2real gap between computationally inexpensive models and complex physical systems remains a central challenge in machine learning applications to engineering problems, particularly in multi-scale settings where reduced-order models typically capture only dominant dynamics. In this work, we present Cheap2Rich, a multi-scale data assimilation framework that reconstructs high-fidelity state spaces from sparse sensor histories by combining a fast low-fidelity prior with learned, interpretable discrepancy corrections. We demonstrate the performance on rotating detonation engines (RDEs), a challenging class of systems that couple detonation-front propagation with injector-driven unsteadiness, mixing, and stiff chemistry across disparate scales. Our approach successfully reconstructs high-fidelity RDE states from sparse measurements while isolating physically meaningful discrepancy dynamics associated with injector-driven effects. The results highlight a general multi-fidelity framework for data assimilation and system identification in complex multi-scale systems, enabling rapid design exploration and real-time monitoring and control while providing interpretable discrepancy dynamics. Code for this project is is available at: github.com/kro0l1k/Cheap2Rich.
- Abstract(参考訳): 計算コストのかかるモデルと複雑な物理システムの間のsim2realギャップを埋めることは、機械学習アプリケーションからエンジニアリング問題への中心的な課題である。
本稿では,高速な低忠実度と解釈可能な差分補正を併用することにより,スパースセンサ履歴から高忠実度状態空間を再構築するマルチスケールデータ同化フレームワークであるCheap2Richを提案する。
本稿では, 回転起爆エンジン (RDE) の性能を実証し, 異種スケールでの起爆前伝播とインジェクタ駆動の非定常, 混合, 固化化学を併用するシステムについて述べる。
提案手法は, インジェクタ駆動効果に関連する物理的に有意な相違のダイナミクスを分離しながら, スパース測定から高忠実なRDE状態の再構築に成功した。
その結果、複雑なマルチスケールシステムにおけるデータ同化とシステム識別のための一般的な多要素フレームワークが強調され、高速な設計探索とリアルタイム監視と制御が可能となり、解釈可能な離散性ダイナミクスが提供される。
このプロジェクトのコードは、github.com/kro0l1k/Cheap2Richで入手できる。
関連論文リスト
- Benchmarking neural surrogates on realistic spatiotemporal multiphysics flows [18.240532888032394]
我々は、困難でアプリケーション駆動のリアクティブフローでニューラルネットワークサロゲートをテストするために設計された厳格なベンチマークフレームワークであるREALM(Realistic AI Learning for Multiphysics)を提案する。
我々は、スペクトル演算子、畳み込みモデル、トランスフォーマー、ポイントワイド演算子、グラフ/メッシュネットワークを含む、12以上の代表代理モデルファミリをベンチマークする。
i)次元性、剛性、メッシュの不規則性によって共同で管理されるスケーリング障壁により、ロールアウトエラーが急速に増加すること、(ii)パラメータカウントよりもアーキテクチャ上の帰納バイアスによって主に制御されるパフォーマンス、(iii)精度の指標と物理的にの間にある永続的なギャップ、の3つの頑健な傾向を識別する。
論文 参考訳(メタデータ) (2025-12-21T05:04:13Z) - Improving Long-Range Interactions in Graph Neural Simulators via Hamiltonian Dynamics [71.53370807809296]
最近のグラフニューラルシミュレータ(GNS)は、グラフ構造化データ上での動的学習によりシミュレーションを加速する。
ハミルトン力学の原理に基づいて構築されたグラフベースニューラルネットワークであるIGNS(Information-serving Graph Neural Simulator)を提案する。
IGNSは最先端のGNSを一貫して上回り、挑戦的で複雑な力学系の下で高い精度と安定性を達成する。
論文 参考訳(メタデータ) (2025-11-11T12:53:56Z) - HAD: Hierarchical Asymmetric Distillation to Bridge Spatio-Temporal Gaps in Event-Based Object Tracking [80.07224739976911]
イベントカメラは例外的な時間分解能と範囲(モード)を提供する
RGBカメラは高解像度でリッチテクスチャを捉えるのに優れていますが、イベントカメラは例外的な時間分解能とレンジ(モダル)を提供します。
論文 参考訳(メタデータ) (2025-10-22T13:15:13Z) - Towards Fast Coarse-graining and Equation Discovery with Foundation Inference Models [6.403678133359229]
高次元記録における潜伏力学は、しばしばより小さな有効変数の集合によって特徴づけられる。
ほとんどの機械学習アプローチは、動的一貫性を強制するモデルとともにオートエンコーダをトレーニングすることで、これらのタスクに共同で取り組む。
我々は最近導入されたファンデーション推論モデル(FIM)を利用して2つの問題を分離することを提案する。
半円拡散を合成ビデオデータに埋め込んだ二重井戸系における概念実証は、高速で再利用可能な粗粒化パイプラインに対するこのアプローチの可能性を示している。
論文 参考訳(メタデータ) (2025-10-14T15:17:23Z) - An Efficient and Mixed Heterogeneous Model for Image Restoration [71.85124734060665]
現在の主流のアプローチは、CNN、Transformers、Mambasの3つのアーキテクチャパラダイムに基づいている。
混合構造融合に基づく効率的で汎用的なIRモデルであるRestorMixerを提案する。
論文 参考訳(メタデータ) (2025-04-15T08:19:12Z) - Multi-fidelity Reinforcement Learning Control for Complex Dynamical Systems [42.2790464348673]
複雑なシステムの不安定性を制御するための多要素強化学習フレームワークを提案する。
提案手法が物理学における2つの複雑な力学に与える影響を実証する。
論文 参考訳(メタデータ) (2025-04-08T00:50:15Z) - Beyond the Kolmogorov Barrier: A Learnable Weighted Hybrid Autoencoder for Model Order Reduction [0.8021197489470758]
我々は,コルモゴロフ障壁を克服するために,学習可能な重み付きハイブリッドオートエンコーダを提案する。
トレーニングされたモデルは、他のモデルに比べて何千倍もシャープさが小さいことを実証的に見出した。
論文 参考訳(メタデータ) (2024-10-23T00:04:26Z) - On Fast Simulation of Dynamical System with Neural Vector Enhanced
Numerical Solver [59.13397937903832]
ニューラルベクトル(NeurVec)と呼ばれる深層学習に基づく補正手法を提案する。
NeurVecは、統合エラーを補償し、シミュレーションでより大きなタイムステップサイズを可能にする。
様々な複雑な力学系ベンチマークの実験により、NeurVecは顕著な一般化能力を示すことが示された。
論文 参考訳(メタデータ) (2022-08-07T09:02:18Z) - Interfacing Finite Elements with Deep Neural Operators for Fast
Multiscale Modeling of Mechanics Problems [4.280301926296439]
本研究では,機械学習を用いたマルチスケールモデリングのアイデアを探求し,高コストソルバの効率的なサロゲートとしてニューラル演算子DeepONetを用いる。
DeepONetは、きめ細かい解法から取得したデータを使って、基礎とおそらく未知のスケールのダイナミクスを学習してオフラインでトレーニングされている。
精度とスピードアップを評価するための様々なベンチマークを提示し、特に時間依存問題に対する結合アルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-25T20:46:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。