論文の概要: An explainable framework for the relationship between dementia and glucose metabolism patterns
- arxiv url: http://arxiv.org/abs/2601.20480v1
- Date: Wed, 28 Jan 2026 10:50:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-29 15:46:06.902951
- Title: An explainable framework for the relationship between dementia and glucose metabolism patterns
- Title(参考訳): 認知症と糖代謝パターンの関連に関する説明可能な枠組み
- Authors: C. Vázquez-García, F. J. Martínez-Murcia, F. Segovia Román, A. Forte, J. Ramírez, I. Illán, A. Hernández-Segura, C. Jiménez-Mesa, Juan M. Górriz,
- Abstract要約: 可変オートエンコーダ(VAE)は、神経画像スキャンを病気に関連する特徴を捉えた低次元の潜伏空間にエンコードすることができる。
本稿では,選択された潜伏変数と認知症進行の指標とを整合させる,フレキシブルな類似性規則化項を有する半教師付きVAEフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-dimensional neuroimaging data presents challenges for assessing neurodegenerative diseases due to complex non-linear relationships. Variational Autoencoders (VAEs) can encode scans into lower-dimensional latent spaces capturing disease-relevant features. We propose a semi-supervised VAE framework with a flexible similarity regularization term that aligns selected latent variables with clinical or biomarker measures of dementia progression. This allows adapting the similarity metric and supervised variables to specific goals or available data. We demonstrate the approach using PET scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI), guiding the first latent dimension to align with a cognitive score. Using this supervised latent variable, we generate average reconstructions across levels of cognitive impairment. Voxel-wise GLM analysis reveals reduced metabolism in key regions, mainly the hippocampus, and within major Resting State Networks, particularly the Default Mode and Central Executive Networks. The remaining latent variables encode affine transformations and intensity variations, capturing confounds such as inter-subject variability and site effects. Our framework effectively extracts disease-related patterns aligned with established Alzheimer's biomarkers, offering an interpretable and adaptable tool for studying neurodegenerative progression.
- Abstract(参考訳): 高次元神経イメージングデータは、複雑な非線形関係による神経変性疾患を評価するための課題を示す。
可変オートエンコーダ(VAE)は、スキャンを病気に関連する特徴を捉えた低次元の潜在空間にエンコードすることができる。
本稿では,選択された潜伏変数と認知症進行の指標とを整合させる,フレキシブルな類似性規則化項を有する半教師付きVAEフレームワークを提案する。
これにより、類似度メトリックと教師付き変数を特定の目標や利用可能なデータに適用できる。
我々は,アルツハイマー病神経画像イニシアチブ(ADNI)のPETスキャンを用いて,認知スコアに適合する第1潜伏次元を導出する手法を実証した。
この教師付き潜伏変数を用いて認知障害のレベルにわたって平均的な再構成を生成する。
Voxel-wise GLM分析は、主に海馬、特にデフォルト・モードとセントラル・エグゼクティブ・ネットワークなどの主要な領域における代謝の減少を明らかにしている。
残りの潜伏変数はアフィン変換と強度の変動をエンコードし、オブジェクト間の変動やサイト効果などの共役を捕捉する。
本フレームワークは、確立したアルツハイマーのバイオマーカーと整合した疾患関連パターンを効果的に抽出し、神経変性の進行を研究するための解釈可能かつ適応可能なツールを提供する。
関連論文リスト
- MethConvTransformer: A Deep Learning Framework for Cross-Tissue Alzheimer's Disease Detection [4.931890971425293]
アルツハイマー病(英語: Alzheimer's disease, AD)は、多因子性神経変性疾患の一つで、進行性認知機能低下と脳の広範な機能低下を特徴とする。
MethConvTransformerはトランスフォーマーベースのディープラーニングフレームワークで、脳と末梢組織のDNAメチル化プロファイルを統合する。
論文 参考訳(メタデータ) (2026-01-01T00:18:33Z) - R-GenIMA: Integrating Neuroimaging and Genetics with Interpretable Multimodal AI for Alzheimer's Disease Progression [63.97617759805451]
アルツハイマー病の早期発見には、マクロスケールの神経解剖学的変化とマイクロスケールの遺伝的感受性を統合できるモデルが必要である。
本稿では,新しいROIワイド・ビジョン・トランスフォーマと遺伝的プロンプトを結合した多モード多言語モデルR-GenIMAを紹介する。
R-GenIMAは、通常の認知、主観記憶、軽度認知障害、ADの4方向分類において最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-12-22T02:54:10Z) - A Semantically Enhanced Generative Foundation Model Improves Pathological Image Synthesis [82.01597026329158]
本稿では,組織合成のための相関調整フレームワーク(CRAFTS)について紹介する。
CRAFTSは、生物学的精度を確保するためにセマンティックドリフトを抑制する新しいアライメント機構を組み込んでいる。
本モデルは,30種類の癌にまたがる多彩な病理像を生成する。
論文 参考訳(メタデータ) (2025-12-15T10:22:43Z) - Adapting HFMCA to Graph Data: Self-Supervised Learning for Generalizable fMRI Representations [57.054499278843856]
機能的磁気共鳴画像(fMRI)解析は、データセットのサイズが限られ、研究間でのドメインの変動が原因で大きな課題に直面している。
コンピュータビジョンにインスパイアされた従来の自己教師付き学習手法は、正と負のサンプルペアに依存することが多い。
本稿では,最近開発された階層関数最大相関アルゴリズム(HFMCA)をグラフ構造fMRIデータに適用することを提案する。
論文 参考訳(メタデータ) (2025-10-05T12:35:01Z) - An Interpretable Ensemble Framework for Multi-Omics Dementia Biomarker Discovery Under HDLSS Conditions [0.0]
本稿では、グラフ注意ネットワーク(GAT)、マルチOmics Variational AutoEncoder(MOVE)、Elastic-net sparse regression、Storey's False Discovery Rate(FDR)を組み合わせた新しいアンサンブル手法を提案する。
シミュレーションされたマルチオミクスデータとアルツハイマー病神経画像イニシアチブ(ADNI)データセットを用いて評価を行った。
本手法は, 優れた予測精度, 特徴選択精度, 生物学的妥当性を示す。
論文 参考訳(メタデータ) (2025-09-04T15:20:13Z) - Leveraging Swin Transformer for enhanced diagnosis of Alzheimer's disease using multi-shell diffusion MRI [1.0439136407307048]
階層型視覚変換器モデルであるSwin Transformerを用いたマルチシェルdMRIデータに基づく分類パイプラインを提案する。
DTIとNODDIの主なメトリクスを抽出し、2次元平面上に投影し、ImageNet-pretrained modelで転送学習を可能にする。
診断群予測(認知正常,軽度認知障害,アルツハイマー病認知症,アミロイド状態分類)の枠組みについて検討した。
論文 参考訳(メタデータ) (2025-07-14T07:31:40Z) - An interpretable generative multimodal neuroimaging-genomics framework for decoding Alzheimer's disease [13.213387075528017]
アルツハイマー病(英語: Alzheimer's disease, AD)は、認知機能障害(Mild Cognitive Impairment, MCI)として知られる前ドロマステージを含む認知症である。
この研究の目的は、マルチモーダルMRIデータと単一核化物多型に依存する脳構造と機能の構造的・機能的調節を捉えることである。
論文 参考訳(メタデータ) (2024-06-19T07:31:47Z) - ICAM-reg: Interpretable Classification and Regression with Feature
Attribution for Mapping Neurological Phenotypes in Individual Scans [3.589107822343127]
本研究では,生成的深層学習における最近の進歩を活かし,同時分類法,回帰法,特徴帰属法を開発した。
Alzheimer's Disease Neuroimaging InitiativeコホートにおけるMini-Mental State examination (MMSE)認知テストスコア予測のタスクについて検証した。
本稿では,生成したfaマップを用いて異常予測を説明し,回帰加群を組み込むことで潜在空間の不連続性を改善することを示す。
論文 参考訳(メタデータ) (2021-03-03T17:55:14Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。