論文の概要: Sheaf Neural Networks and biomedical applications
- arxiv url: http://arxiv.org/abs/2602.00159v1
- Date: Thu, 29 Jan 2026 19:36:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-03 19:28:33.016148
- Title: Sheaf Neural Networks and biomedical applications
- Title(参考訳): せん断ニューラルネットワークとバイオメディカル応用
- Authors: Aneeqa Mehrab, Jan Willem Van Looy, Pietro Demurtas, Stefano Iotti, Emil Malucelli, Francesca Rossi, Ferdinando Zanchetta, Rita Fioresi,
- Abstract要約: 本研究の目的は, せん断ニューラルネットワーク(SNN)アルゴリズムの背後にある理論と数学的モデリングを解明し, 具体的な事例研究において, SNNが効果的に生物医学的問題に答えられるかを示すことである。
- 参考スコア(独自算出の注目度): 23.63963480399182
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The purpose of this paper is to elucidate the theory and mathematical modelling behind the sheaf neural network (SNN) algorithm and then show how SNN can effectively answer to biomedical questions in a concrete case study and outperform the most popular graph neural networks (GNNs) as graph convolutional networks (GCNs), graph attention networks (GAT) and GraphSage.
- Abstract(参考訳): 本研究の目的は, せん断ニューラルネットワーク(SNN)アルゴリズムの背後にある理論と数学的モデリングを解明し, SNNが具体的なケーススタディにおいてバイオメディカルな問題に効果的に答え, グラフ畳み込みネットワーク(GCN), グラフアテンションネットワーク(GAT), グラフセージ(GraphSage)として最も一般的なグラフニューラルネットワーク(GNN)より優れていることを示すことである。
関連論文リスト
- On Neural Networks as Infinite Tree-Structured Probabilistic Graphical Models [44.676210493587256]
本稿では,ニューラルネットワークに対応する無限木構造PGMを構築することにより,革新的な解を提案する。
我々の研究は、DNNが前方伝播中に、この代替のPGM構造において正確であるPGMの近似を実行することを明らかにした。
論文 参考訳(メタデータ) (2023-05-27T21:32:28Z) - Knowledge Enhanced Graph Neural Networks for Graph Completion [0.0]
Knowledge Enhanced Graph Neural Networks (KeGNN)は、グラフ補完のためのニューラルシンボリックなフレームワークである。
KeGNNは、知識強化レイヤを積み重ねた基盤としてグラフニューラルネットワークで構成されている。
我々はKeGNNを、最先端のグラフニューラルネットワーク、グラフ畳み込みネットワーク、グラフ注意ネットワークの2つと組み合わせてインスタンス化する。
論文 参考訳(メタデータ) (2023-03-27T07:53:43Z) - Theory of Graph Neural Networks: Representation and Learning [44.02161831977037]
グラフニューラルネットワーク(GNN)は、ノードやグラフ、ポイントの設定を予測するための一般的な学習モデルになっている。
本稿では、広く使われているメッセージパッシングGNNと高次GNNの近似と学習特性に関する、新たな理論結果の選択について要約する。
論文 参考訳(メタデータ) (2022-04-16T02:08:50Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - Graph Neural Networks in Network Neuroscience [1.6114012813668934]
グラフニューラルネットワーク(GNN)は、ディープグラフ構造を学ぶための巧妙な方法を提供する。
GNNベースの手法は、脳グラフ合成の欠如や疾患の分類など、脳グラフに関連するいくつかのアプリケーションで使用されている。
神経疾患の診断と集団グラフ統合のためのネットワーク神経科学分野におけるGNNモデルのより良い応用に向けての道筋をグラフ化して結論付ける。
論文 参考訳(メタデータ) (2021-06-07T11:49:57Z) - Graph Structure of Neural Networks [104.33754950606298]
ニューラルネットワークのグラフ構造が予測性能にどのように影響するかを示す。
リレーショナルグラフの"スイートスポット"は、予測性能を大幅に改善したニューラルネットワークにつながる。
トップパフォーマンスニューラルネットワークは、実際の生物学的ニューラルネットワークと驚くほどよく似たグラフ構造を持つ。
論文 参考訳(メタデータ) (2020-07-13T17:59:31Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
低次元問題に対する高密度固定グラフ上のGNNと高次元問題に対するサンプリングベースGNNの2つの手法を提案する。
RRT(Rapidly-Exploring Random Trees)におけるクリティカルノードの特定やサンプリング分布の学習といった計画上の問題にGNNが取り組む能力について検討する。
臨界サンプリング、振り子、6つのDoFロボットアームによる実験では、GNNは従来の分析手法の改善だけでなく、完全に接続されたニューラルネットワークや畳み込みニューラルネットワークを用いた学習アプローチも示している。
論文 参考訳(メタデータ) (2020-06-11T08:19:06Z) - Graph Neural Networks Meet Neural-Symbolic Computing: A Survey and
Perspective [8.047921724008278]
ニューラルシンボリック・コンピューティングのモデルとしてのGNNの利用について、現状を概観する。
これには、いくつかのドメインでのGNNの適用や、ニューラルシンボリックコンピューティングの現在の発展との関係が含まれる。
論文 参考訳(メタデータ) (2020-02-29T18:55:13Z) - Understanding Graph Isomorphism Network for rs-fMRI Functional
Connectivity Analysis [49.05541693243502]
グラフ同型ネットワーク(GIN)を用いてfMRIデータを解析するフレームワークを開発する。
本稿では,GINがグラフ空間における畳み込みニューラルネットワーク(CNN)の二重表現であることを示す。
我々は,提案したGINをワンホット符号化で調整するGNNに対して,CNNベースのサリエンシマップ技術を利用する。
論文 参考訳(メタデータ) (2020-01-10T23:40:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。