論文の概要: QUASAR: A Universal Autonomous System for Atomistic Simulation and a Benchmark of Its Capabilities
- arxiv url: http://arxiv.org/abs/2602.00185v1
- Date: Fri, 30 Jan 2026 05:29:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-03 19:28:33.039016
- Title: QUASAR: A Universal Autonomous System for Atomistic Simulation and a Benchmark of Its Capabilities
- Title(参考訳): QuaSAR:原子論シミュレーションのための普遍的自律システムとその能力のベンチマーク
- Authors: Fengxu Yang, Jack D. Evans,
- Abstract要約: QUASARは、生産段階の科学的発見を促進するために設計された原子論シミュレーションのための普遍的な自律システムである。
我々は,光触媒スクリーニングや新規材料評価など,日常的な課題からフロンティア研究の課題まで,一連の3段階の課題に対してquariSARをベンチマークした。
その結果,quiSARはタスク固有の自動化フレームワークではなく,一般的な原子論的推論システムとして機能することが示唆された。
- 参考スコア(独自算出の注目度): 0.7519872646378835
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The integration of large language models (LLMs) into materials science offers a transformative opportunity to streamline computational workflows, yet current agentic systems remain constrained by rigid tool-calling approaches and narrowly scoped agents. In this work, we introduce QUASAR, a universal autonomous system for atomistic simulation designed to facilitate production-grade scientific discovery. QUASAR autonomously orchestrates complex multi-scale workflows across diverse methods, including density functional theory, machine learning potentials, molecular dynamics, and Monte Carlo simulations. The system incorporates robust mechanisms for adaptive planning, context-efficient memory management, and hybrid knowledge retrieval to navigate real-world research scenarios without human intervention. We benchmark QUASAR against a series of three-tiered tasks, progressing from routine tasks to frontier research challenges such as photocatalyst screening and novel material assessment. These results suggest that QUASAR can function as a general atomistic reasoning system rather than a task-specific automation framework. They also provide initial evidence supporting the potential deployment of agentic AI as a component of computational chemistry research workflows, while identifying areas requiring further development.
- Abstract(参考訳): 大規模言語モデル(LLM)を材料科学に統合することは、計算ワークフローを合理化するための変革的な機会を提供するが、現在のエージェントシステムは厳密なツール呼び出しアプローチと狭い範囲のエージェントによって制約される。
本研究では、生産段階の科学的発見を容易にするために設計された原子論シミュレーションのための普遍的な自律システムであるQUISARを紹介する。
QUISARは、密度汎関数理論、機械学習ポテンシャル、分子動力学、モンテカルロシミュレーションなど、様々な方法で複雑なマルチスケールワークフローを自律的にオーケストレーションする。
このシステムは、適応計画、文脈効率のよいメモリ管理、ハイブリッド知識検索のための堅牢なメカニズムを組み込んで、人間の介入なしに現実世界の研究シナリオをナビゲートする。
我々は,光触媒スクリーニングや新規材料評価など,日常的な課題からフロンティア研究の課題まで,一連の3段階の課題に対してquariSARをベンチマークした。
これらの結果から,quoSARはタスク固有の自動化フレームワークではなく,一般的な原子論的推論システムとして機能することが示唆された。
また、計算化学研究ワークフローのコンポーネントとしてのエージェントAIの潜在的展開を支持する最初の証拠も提供し、さらなる開発を必要とする領域を特定している。
関連論文リスト
- EmboCoach-Bench: Benchmarking AI Agents on Developing Embodied Robots [68.29056647487519]
Embodied AIは、高忠実度シミュレーションと大規模データ収集によって実現されている。
しかし、このスケーリング能力は、労働集約的な手作業の監視に依存しているため、いまだにボトルネックになっている。
実装ポリシーを自律的に構築するための LLM エージェントの能力を評価するベンチマークである textscEmboCoach-Bench を紹介する。
論文 参考訳(メタデータ) (2026-01-29T11:33:49Z) - An Agentic Framework for Autonomous Materials Computation [70.24472585135929]
大規模言語モデル(LLM)は、科学的発見を加速するための強力なツールとして登場した。
近年の進歩はLLMをエージェントフレームワークに統合し、複雑な科学実験のための検索、推論、ツールの使用を可能にしている。
本稿では,第一原理計算の信頼性向上を目的としたドメイン特化エージェントを提案する。
論文 参考訳(メタデータ) (2025-12-22T15:03:57Z) - Seismology modeling agent: A smart assistant for geophysical researchers [14.28965530601497]
本稿では,Large Language Models (LLM) を利用したインテリジェントな対話型ワークフローを提案する。
SPECFEMのための最初のモデルコンテキストプロトコル(MCP)サーバスイートを紹介する。
このフレームワークは、完全な自動実行とHuman-in-the-loopコラボレーションの両方をサポートする。
論文 参考訳(メタデータ) (2025-12-16T14:18:26Z) - Agentic Systems in Radiology: Design, Applications, Evaluation, and Challenges [13.53016942028838]
大型言語モデル(LLM)は、自然言語を使って情報を統合し、指示に従い、推論と計画の形式を実行することができる。
マルチモーダルなデータストリームと複数のシステムにまたがるオーケストレーションによって、ラジオロジーはコンテキストに適応し、繰り返しながら複雑なタスクを自動化するエージェントの恩恵を受けるのに一意に適している。
本稿では, LLMエージェントシステムの設計を概観し, 主要なアプリケーションを強調し, 計画とツール使用の評価方法について議論し, エラーカスケード, ツール使用効率, 健康IT統合といった課題の概要を述べる。
論文 参考訳(メタデータ) (2025-10-10T13:56:27Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [58.50944604905037]
エッジクラウドコラボレーティブコンピューティング(ECCC)は、現代のインテリジェントアプリケーションの計算要求に対処するための重要なパラダイムとして登場した。
AIの最近の進歩、特にディープラーニングと大規模言語モデル(LLM)は、これらの分散システムの能力を劇的に向上させてきた。
この調査は、基本的なアーキテクチャ、技術の実現、新しいアプリケーションに関する構造化されたチュートリアルを提供する。
論文 参考訳(メタデータ) (2025-05-03T13:55:38Z) - An LLM-enabled Multi-Agent Autonomous Mechatronics Design Framework [49.633199780510864]
本研究は, 機械設計, 最適化, エレクトロニクス, ソフトウェア工学の専門知識を統合した多エージェント自律メカトロニクス設計フレームワークを提案する。
このフレームワークは、言語駆動のワークフローを通じて運用され、構造化された人間のフィードバックを組み込んで、現実世界の制約下での堅牢なパフォーマンスを保証する。
完全に機能する自律型容器は、最適化された推進、コスト効率の高い電子機器、高度な制御を備えていた。
論文 参考訳(メタデータ) (2025-04-20T16:57:45Z) - Rapid and Automated Alloy Design with Graph Neural Network-Powered LLM-Driven Multi-Agent Systems [0.0]
マルチエージェントAIモデルは、新しい金属合金の発見を自動化するために使用される。
MLをベースとした原子間ポテンシャルをモデルとした立方晶(bcc)合金のNbMoTa族に着目した。
LLMをベースとしたエージェントの動的協調により、GNNの予測力を相乗化することにより、システムは巨大な合金設計空間を自律的にナビゲートする。
論文 参考訳(メタデータ) (2024-10-17T17:06:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。