論文の概要: Exact Instance Compression for Convex Empirical Risk Minimization via Color Refinement
- arxiv url: http://arxiv.org/abs/2602.00437v1
- Date: Sat, 31 Jan 2026 01:17:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-03 19:28:33.183905
- Title: Exact Instance Compression for Convex Empirical Risk Minimization via Color Refinement
- Title(参考訳): カラーリファインメントによる凸型経験的リスク最小化のためのエクササイズ圧縮
- Authors: Bryan Zhu, Ziang Chen,
- Abstract要約: 実証的な二次リスク ERM (ERM) は計算に高価である。
カラーリファインメントに基づく凸最小化のための新しい圧縮フレームワークを提案する。
- 参考スコア(独自算出の注目度): 12.6630190876621
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Empirical risk minimization (ERM) can be computationally expensive, with standard solvers scaling poorly even in the convex setting. We propose a novel lossless compression framework for convex ERM based on color refinement, extending prior work from linear programs and convex quadratic programs to a broad class of differentiable convex optimization problems. We develop concrete algorithms for a range of models, including linear and polynomial regression, binary and multiclass logistic regression, regression with elastic-net regularization, and kernel methods such as kernel ridge regression and kernel logistic regression. Numerical experiments on representative datasets demonstrate the effectiveness of the proposed approach.
- Abstract(参考訳): 経験的リスク最小化(ERM)は計算コストがかかり、標準解法は凸設定でもスケールが悪くなる。
本稿では,線形プログラムや凸二次プログラムから,より広範な微分可能な凸最適化問題まで,事前の作業を拡張したカラーリファインメントに基づく新しい凸EMMのロスレス圧縮フレームワークを提案する。
本稿では,線形回帰や多項式回帰,二進法,多クラスロジスティック回帰,弾性ネット正規化による回帰,カーネルリッジ回帰やカーネルロジスティック回帰などのカーネル手法など,様々なモデルの具体的なアルゴリズムを開発する。
代表的データセットに関する数値実験により,提案手法の有効性が示された。
関連論文リスト
- A Simplified Analysis of SGD for Linear Regression with Weight Averaging [64.2393952273612]
最近の研究は、定常学習率を用いた線形回帰におけるSGD最適化のためのシャープレートを提供する。
簡単な線形代数ツールを用いて,2021ベニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグナグニグニグニグニグニグニグニグニグニグニグネグニグニグニグニグネグニグニグネグニ
我々の研究は線形回帰の勾配勾配を非常に容易に解析し、ミニバッチと学習率のスケジューリングのさらなる分析に役立てることができると信じている。
論文 参考訳(メタデータ) (2025-06-18T15:10:38Z) - Fair and Accurate Regression: Strong Formulations and Algorithms [5.93858665501805]
本稿では,メトリクスを組み込んだ回帰問題を解くための混合整数最適化手法を提案する。
公正回帰モデルのトレーニングのための正確な定式化を提案する。
最小二乗および対数回帰問題に対する数値実験は、競合統計性能を示す。
論文 参考訳(メタデータ) (2024-12-22T18:04:54Z) - Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [53.03951222945921]
我々はスムーズな(摂動された)ポリシーを解析し、線形オラクルが使用する方向に対して制御されたランダムな摂動を付加する。
我々の主な貢献は、過剰リスクを摂動バイアス、統計的推定誤差、最適化誤差に分解する一般化境界である。
車両のスケジューリングやスムーズ化がトラクタブルトレーニングと制御された一般化の両方を可能にしていることを示す。
論文 参考訳(メタデータ) (2024-07-24T12:00:30Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
emphdone right -- 最適化とカーネルコミュニティからの具体的な洞察を使用するという意味で -- が、勾配降下は非常に効果的であることを示している。
本稿では,直感的に設計を記述し,設計選択について説明する。
本手法は,分子結合親和性予測のための最先端グラフニューラルネットワークと同程度にガウス過程の回帰を配置する。
論文 参考訳(メタデータ) (2023-10-31T16:15:13Z) - Vector-Valued Least-Squares Regression under Output Regularity
Assumptions [73.99064151691597]
最小二乗回帰問題を無限次元出力で解くために,還元ランク法を提案し,解析する。
提案手法の学習バウンダリを導出し、フルランク手法と比較して統計的性能の設定を改善する研究を行う。
論文 参考訳(メタデータ) (2022-11-16T15:07:00Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Robust Regularized Low-Rank Matrix Models for Regression and
Classification [14.698622796774634]
本稿では,ランク制約,ベクトル正規化(疎性など),一般損失関数に基づく行列変分回帰モデルのフレームワークを提案する。
アルゴリズムは収束することが保証されており、アルゴリズムのすべての累積点が$O(sqrtn)$100の順序で推定誤差を持ち、最小値の精度をほぼ達成していることを示す。
論文 参考訳(メタデータ) (2022-05-14T18:03:48Z) - Piecewise linear regression and classification [0.20305676256390928]
本稿では,線形予測器を用いた多変量回帰と分類問題の解法を提案する。
本論文で記述されたアルゴリズムのpython実装は、http://cse.lab.imtlucca.it/bemporad/parcで利用可能である。
論文 参考訳(メタデータ) (2021-03-10T17:07:57Z) - A spectral algorithm for robust regression with subgaussian rates [0.0]
本研究では, 試料の分布に強い仮定がない場合の線形回帰に対する2次時間に対する新しい線形アルゴリズムについて検討する。
目的は、データが有限モーメントしか持たなくても最適な準ガウス誤差を達成できる手順を設計することである。
論文 参考訳(メタデータ) (2020-07-12T19:33:50Z) - A Survey of Constrained Gaussian Process Regression: Approaches and
Implementation Challenges [0.0]
実証性や有界制約、単調性および凸性制約、微分方程式制約、境界条件制約を含むガウス過程制約のいくつかのクラスの概要を提供する。
本稿では,各手法の背景にある戦略と実装の違いを比較し,制約によってもたらされる計算上の課題について議論する。
論文 参考訳(メタデータ) (2020-06-16T17:03:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。