論文の概要: To Search or Not to Search: Aligning the Decision Boundary of Deep Search Agents via Causal Intervention
- arxiv url: http://arxiv.org/abs/2602.03304v1
- Date: Tue, 03 Feb 2026 09:29:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-04 18:37:15.360271
- Title: To Search or Not to Search: Aligning the Decision Boundary of Deep Search Agents via Causal Intervention
- Title(参考訳): 検索すべきか否か:因果介入によるディープサーチエージェントの判断境界の調整
- Authors: Wenlin Zhang, Kuicai Dong, Junyi Li, Yingyi Zhang, Xiaopeng Li, Pengyue Jia, Yi Wen, Derong Xu, Maolin Wang, Yichao Wang, Yong Liu, Xiangyu Zhao,
- Abstract要約: 我々は,不整合決定境界の根本原因を同定し,蓄積した情報が回答するのに十分であるかどうかをしきい値に判定する。
これにより、過剰探索(十分な知識にもかかわらず冗長探索)と過度探索(早期終了)が誤った答えをもたらす。
まず,境界誤差を識別する因果的介入に基づく診断手法を提案する。
第2に,Deep Search Agent(DAS)のための決定境界アライメントを開発する。
我々のDAS法はこれらの境界を効果的に校正し、オーバーサーチとアンダーサーチの両方を緩和し、精度と効率を大幅に向上させる。
- 参考スコア(独自算出の注目度): 61.82680155643223
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep search agents, which autonomously iterate through multi-turn web-based reasoning, represent a promising paradigm for complex information-seeking tasks. However, current agents suffer from critical inefficiency: they conduct excessive searches as they cannot accurately judge when to stop searching and start answering. This stems from outcome-centric training that prioritize final results over the search process itself. We identify the root cause as misaligned decision boundaries, the threshold determining when accumulated information suffices to answer. This causes over-search (redundant searching despite sufficient knowledge) and under-search (premature termination yielding incorrect answers). To address these errors, we propose a comprehensive framework comprising two key components. First, we introduce causal intervention-based diagnosis that identifies boundary errors by comparing factual and counterfactual trajectories at each decision point. Second, we develop Decision Boundary Alignment for Deep Search agents (DAS), which constructs preference datasets from causal feedback and aligns policies via preference optimization. Experiments on public datasets demonstrate that decision boundary errors are pervasive across state-of-the-art agents. Our DAS method effectively calibrates these boundaries, mitigating both over-search and under-search to achieve substantial gains in accuracy and efficiency. Our code and data are publicly available at: https://github.com/Applied-Machine-Learning-Lab/WWW2026_DAS.
- Abstract(参考訳): ディープサーチエージェントは、マルチターンウェブベースの推論を通じて自律的に反復するが、複雑な情報検索タスクには有望なパラダイムである。
しかし、現在のエージェントは、いつ検索をやめて答え始めるかを正確に判断できないため、過剰な検索を行うため、致命的な非効率性に悩まされている。
これは結果中心のトレーニングに起因し、最終的な結果が検索プロセス自体よりも優先される。
根本原因を誤った決定境界とみなし,蓄積した情報が回答するのに十分なしきい値を決定する。
これは、過剰探索(十分な知識にもかかわらず、冗長探索)と過度探索(早期終了は、誤った答えをもたらす)を引き起こす。
これらの誤りに対処するため、我々は2つの重要なコンポーネントからなる包括的フレームワークを提案する。
まず, 因果的介入に基づく診断を導入し, 各判定点における事実と反事実の軌跡を比較し, 境界誤差を同定する。
次に,Decision Boundary Alignment for Deep Search Agent (DAS)を開発した。
公開データセットの実験では、決定境界エラーが最先端のエージェントにまたがって広まっていることが示されている。
我々のDAS法はこれらの境界を効果的に校正し、オーバーサーチとアンダーサーチの両方を緩和し、精度と効率を大幅に向上させる。
私たちのコードとデータは、https://github.com/Applied-Machine-Learning-Lab/WWW2026_DASで公開されています。
関連論文リスト
- SAGE: Steerable Agentic Data Generation for Deep Search with Execution Feedback [68.60326181052658]
本稿では,高品質で難易度の高い探索問合せを自動生成するエージェントパイプラインを提案する。
我々のパイプラインであるSAGEは、QAペアを提案するデータジェネレータと、生成された質問を解決するための検索エージェントで構成される。
我々の本質的な評価は、SAGEが様々な推論戦略を必要とする質問を生成する一方で、生成したデータの正確性や難易度を著しく高めていることを示している。
論文 参考訳(メタデータ) (2026-01-26T06:37:56Z) - AdaSearch: Balancing Parametric Knowledge and Search in Large Language Models via Reinforcement Learning [61.974530499621274]
検索への過度な依存は、ノイズや悪意のあるコンテンツに対する不必要なコストとリスクをもたらす。
本稿では,探索を起動するか否かの判断から問題を解き放つ2段階の結果駆動型RLフレームワークを提案する。
AdaSearchは知識境界認識を大幅に改善し、不要な検索コールを削減し、タスクパフォーマンスを強く保ち、透明性と解釈可能な意思決定行動を提供する。
論文 参考訳(メタデータ) (2025-12-18T18:50:01Z) - Demystifying deep search: a holistic evaluation with hint-free multi-hop questions and factorised metrics [89.1999907891494]
We present WebDetective, a benchmark of hint-free multi-hop questions with a control Wikipedia sandbox。
25の最先端モデルに対する我々の評価は、すべてのアーキテクチャにまたがる体系的な弱点を明らかにしている。
私たちはエージェントワークフローであるEvidenceLoopを開発し、ベンチマークが特定する課題を明示的にターゲットしています。
論文 参考訳(メタデータ) (2025-10-01T07:59:03Z) - Perception Matters: Enhancing Embodied AI with Uncertainty-Aware Semantic Segmentation [24.32551050538683]
Embodied AIは、探索されていない環境での行動に大きな進歩を遂げた。
現在の探索法は主に、日付付き知覚モデルに焦点をあて、時間的集約を無視し、地上の真実から試験時にノイズの多い知覚へ直接移行する。
本研究は,アグリゲーション間の知覚確率と不確かさを校正し,決定を下すことによって,同定された問題に対処する。
論文 参考訳(メタデータ) (2024-08-05T08:14:28Z) - Self-Evaluation Guided Beam Search for Reasoning [61.523627290397556]
我々は,Large Language Model (LLM) の推論プロセスのガイドと校正を行うための段階的自己評価機構を導入する。
本稿では,ビームサーチによる自己評価ガイダンスを統合した復号アルゴリズムを提案する。
我々のアプローチは、GSM8K、AQuA、StrategyQAにおいて、対応するCodexバックボンドベースラインをわずかに精度6.34%、9.56%、および5.46%で上回る。
論文 参考訳(メタデータ) (2023-05-01T02:37:59Z) - Multi-Agent Active Search using Detection and Location Uncertainty [6.587280549237275]
アクティブ検索アルゴリズムは、検出の不確実性と位置不確実性という2つのタイプの不確実性とを競合しなければならない。
まず,ターゲット検出と位置不確実性の両方を共同で扱う推論手法を提案する。
次に、トンプソンサンプリングを用いて、分散マルチエージェント能動探索を可能にする意思決定アルゴリズムを構築する。
論文 参考訳(メタデータ) (2022-03-09T04:53:37Z) - An Automated Approach to Causal Inference in Discrete Settings [8.242194776558895]
本稿では,効率的な二重緩和法と空間分岐結合法を用いて因果効果を自動的に結合するアルゴリズムを提案する。
このアルゴリズムは、許容可能なデータ生成プロセスを探索し、利用可能な情報と最も正確な範囲を出力する。
これは、不完全境界を特徴付ける$epsilon$-sharpnessと呼ばれる追加の保証を提供する。
論文 参考訳(メタデータ) (2021-09-28T03:55:32Z) - A2Log: Attentive Augmented Log Anomaly Detection [53.06341151551106]
異常検出は、ITサービスの信頼性とサービス性にとってますます重要になる。
既存の教師なし手法は、適切な決定境界を得るために異常な例を必要とする。
我々は,異常判定と異常判定の2段階からなる教師なし異常検出手法であるA2Logを開発した。
論文 参考訳(メタデータ) (2021-09-20T13:40:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。