論文の概要: Approximate simulation of complex quantum circuits using sparse tensors
- arxiv url: http://arxiv.org/abs/2602.04011v1
- Date: Tue, 03 Feb 2026 20:58:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-05 19:45:11.272626
- Title: Approximate simulation of complex quantum circuits using sparse tensors
- Title(参考訳): スパーステンソルを用いた複素量子回路の近似シミュレーション
- Authors: Benjamin N. Miller, Peter K. Elgee, Jason R. Pruitt, Kevin C. Cox,
- Abstract要約: スパーステンソルを用いて量子回路を近似する手法を提案する。
データ構造と収縮アルゴリズムが効率的であることを示し、期待される実行時スケーリングとキュービット数と回路深さを比較検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The study of quantum circuit simulation using classical computers is a key research topic that helps define the boundary of verifiable quantum advantage, solve quantum many-body problems, and inform development of quantum hardware and software. Tensor networks have become forefront mathematical tools for these tasks. Here we introduce a method to approximately simulate quantum circuits using sparsely-populated tensors. We describe a sparse tensor data structure that can represent quantum states with no underlying symmetry, and outline algorithms to efficiently contract and truncate these tensors. We show that the data structure and contraction algorithm are efficient, leading to expected runtime scalings versus qubit number and circuit depth. Our results motivate future research in optimization of sparse tensor networks for quantum simulation.
- Abstract(参考訳): 古典的コンピュータを用いた量子回路シミュレーションの研究は、検証可能な量子優位性の境界を定義し、量子多体問題を解き、量子ハードウェアとソフトウェアの開発を知らせる重要な研究トピックである。
テンソルネットワークはこれらのタスクのための数学ツールの最前線となっている。
本稿では,スパース分布テンソルを用いて量子回路を近似する手法を提案する。
基礎となる対称性を持たない量子状態を表現することのできるスパーステンソルデータ構造を記述し、これらのテンソルを効率的に収縮・切断するためのアルゴリズムを概説する。
データ構造と収縮アルゴリズムが効率的であることを示し、期待される実行時スケーリングとキュービット数と回路深さを比較検討する。
本研究は,量子シミュレーションのためのスパーステンソルネットワークの最適化に関する今後の研究を動機づけるものである。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [62.46800898243033]
量子学習理論の最近の進歩は、様々な古典的な入力によって生成された測定データから、大きな量子ビット回路の線形特性を効率的に学習できるのか?
我々は、小さな予測誤差を達成するためには、$d$で線形にスケーリングするサンプルの複雑さが必要であることを証明し、それに対応する計算複雑性は、dで指数関数的にスケールする可能性がある。
そこで本研究では,古典的影と三角展開を利用したカーネルベースの手法を提案し,予測精度と計算オーバーヘッドとのトレードオフを制御可能とした。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Tensor Quantum Programming [0.0]
本研究では,行列積演算子を量子回路に符号化するアルゴリズムを開発した。
これは、微分方程式、最適化問題、量子化学において頻繁に遭遇する数に対して、最大50量子ビットでの有効性を示す。
論文 参考訳(メタデータ) (2024-03-20T10:44:00Z) - Quantum Computing and Tensor Networks for Laminate Design: A Novel Approach to Stacking Sequence Retrieval [1.6421520075844793]
主な例として、積層複合材料の重量最適化がある。
量子計算の急速に発展する分野は、これらの複雑な問題に対処するための新しいアプローチを提供するかもしれない。
論文 参考訳(メタデータ) (2024-02-09T15:01:56Z) - Tensor Networks or Decision Diagrams? Guidelines for Classical Quantum
Circuit Simulation [65.93830818469833]
テンソルネットワークと決定図は、異なる視点、用語、背景を念頭に、独立して開発されている。
これらの手法が古典的量子回路シミュレーションにどのようにアプローチするかを考察し、最も適用可能な抽象化レベルに関してそれらの相似性を考察する。
量子回路シミュレーションにおいて,テンソルネットワークの使い勝手の向上と決定図の使い勝手の向上に関するガイドラインを提供する。
論文 参考訳(メタデータ) (2023-02-13T19:00:00Z) - On the quantum simulation of complex networks [0.0]
連続時間量子ウォークアルゴリズムは、ハミルトニアンがグラフの隣接行列によって与えられる量子系の力学をシミュレートできると仮定する。
我々は、量子シミュレーションの最先端の結果を、少数のハブを含むグラフにまで拡張するが、それ以外はスパースである。
論文 参考訳(メタデータ) (2022-12-12T18:55:31Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - TensorLy-Quantum: Quantum Machine Learning with Tensor Methods [67.29221827422164]
PyTorch APIを採用した量子回路シミュレーションのためのPythonライブラリを作成します。
Ly-Quantumは、単一のGPU上で数百のキュービット、複数のGPU上で数千のキュービットにスケールすることができる。
論文 参考訳(メタデータ) (2021-12-19T19:26:17Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
現在の世代のノイズの多い中間スケール量子コンピュータ(NISQ)は、チップサイズとエラー率に大きく制限されている。
我々は、自由フェルミオンとして知られる特定のスピンハミルトニアンをシミュレーションするために、量子回路を効率よく圧縮するために局所化回路変換を導出する。
提案した数値回路圧縮アルゴリズムは、後方安定に動作し、$mathcalO(103)$スピンを超える回路合成を可能にするスピンの数で3次スケールする。
論文 参考訳(メタデータ) (2021-08-06T19:38:03Z) - Simple heuristics for efficient parallel tensor contraction and quantum
circuit simulation [1.4416132811087747]
本稿では,確率モデルを用いたテンソルネットワークの縮約のための並列アルゴリズムを提案する。
結果のアルゴリズムをランダム量子回路のシミュレーションに適用する。
論文 参考訳(メタデータ) (2020-04-22T23:00:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。