論文の概要: Simple heuristics for efficient parallel tensor contraction and quantum
circuit simulation
- arxiv url: http://arxiv.org/abs/2004.10892v2
- Date: Fri, 1 May 2020 08:58:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-22 10:48:44.213159
- Title: Simple heuristics for efficient parallel tensor contraction and quantum
circuit simulation
- Title(参考訳): 高速並列テンソル収縮と量子回路シミュレーションのための単純ヒューリスティックス
- Authors: Roman Schutski, Dmitry Kolmakov, Taras Khakhulin, and Ivan Oseledets
- Abstract要約: 本稿では,確率モデルを用いたテンソルネットワークの縮約のための並列アルゴリズムを提案する。
結果のアルゴリズムをランダム量子回路のシミュレーションに適用する。
- 参考スコア(独自算出の注目度): 1.4416132811087747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor networks are the main building blocks in a wide variety of
computational sciences, ranging from many-body theory and quantum computing to
probability and machine learning. Here we propose a parallel algorithm for the
contraction of tensor networks using probabilistic graphical models. Our
approach is based on the heuristic solution of the $\mu$-treewidth deletion
problem in graph theory. We apply the resulting algorithm to the simulation of
random quantum circuits and discuss the extensions for general tensor network
contractions.
- Abstract(参考訳): テンソルネットワークは、多体理論や量子コンピューティングから確率や機械学習まで、様々な計算科学の主要な構成要素である。
本稿では,確率的グラフィカルモデルを用いたテンソルネットワークの縮約のための並列アルゴリズムを提案する。
我々のアプローチはグラフ理論における$\mu$-treewidth削除問題のヒューリスティック解に基づいている。
得られたアルゴリズムをランダム量子回路のシミュレーションに適用し、一般的なテンソルネットワーク収縮の拡張について考察する。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Circuit Simulation with Fast Tensor Decision Diagram [10.24745264727704]
テンソル決定図を利用してオーバヘッドを排除し,大幅な高速化を実現する,新たなオープンソースフレームワークを提案する。
本稿では,テンソル決定ダイアグラム演算のための線形複雑度ランク単純化アルゴリズム,テトリス,エッジ中心データ構造を提案する。
論文 参考訳(メタデータ) (2024-01-21T01:24:29Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
原子と分子の衝突に対するシュリンガー方程式を解くためのハイブリッド量子古典アルゴリズムを提案する。
このアルゴリズムはコーン変分原理の$S$-matrixバージョンに基づいており、基本散乱$S$-matrixを計算する。
大規模多原子分子の衝突をシミュレートするために,アルゴリズムをどのようにスケールアップするかを示す。
論文 参考訳(メタデータ) (2023-04-12T18:10:47Z) - Tensor Networks or Decision Diagrams? Guidelines for Classical Quantum
Circuit Simulation [65.93830818469833]
テンソルネットワークと決定図は、異なる視点、用語、背景を念頭に、独立して開発されている。
これらの手法が古典的量子回路シミュレーションにどのようにアプローチするかを考察し、最も適用可能な抽象化レベルに関してそれらの相似性を考察する。
量子回路シミュレーションにおいて,テンソルネットワークの使い勝手の向上と決定図の使い勝手の向上に関するガイドラインを提供する。
論文 参考訳(メタデータ) (2023-02-13T19:00:00Z) - On the quantum simulation of complex networks [0.0]
連続時間量子ウォークアルゴリズムは、ハミルトニアンがグラフの隣接行列によって与えられる量子系の力学をシミュレートできると仮定する。
我々は、量子シミュレーションの最先端の結果を、少数のハブを含むグラフにまで拡張するが、それ以外はスパースである。
論文 参考訳(メタデータ) (2022-12-12T18:55:31Z) - Constructing Optimal Contraction Trees for Tensor Network Quantum
Circuit Simulation [1.2704529528199062]
量子回路シミュレーションにおける重要な問題の1つは、縮退木の構築である。
本稿では,最適な縮尺木を構築するための新しい時間アルゴリズムを提案する。
提案手法は、試験された量子回路の大部分において、優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2022-09-07T02:50:30Z) - Hyper-optimized approximate contraction of tensor networks with
arbitrary geometry [0.0]
任意のグラフ上の結合圧縮によりテンソルネットワークの収縮を近似する方法を述べる。
特に,圧縮・収縮戦略自体に対する過度な最適化を導入し,誤差とコストを最小化する。
論文 参考訳(メタデータ) (2022-06-14T17:59:16Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Simulation Paths for Quantum Circuit Simulation with Decision Diagrams [72.03286471602073]
決定図を用いて量子回路をシミュレートする際に選択される経路の重要性について検討する。
我々は、専用のシミュレーションパスを調査できるオープンソースのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-01T19:00:11Z) - Simulation of Quantum Computing on Classical Supercomputers [23.350853237013578]
本研究では,非方向グラフの切断エッジに基づくスキームを提案する。
このスキームは、木幅の大きな無向グラフのエッジをカットし、多くの無向グラフを得る。
4096コアのスーパーコンピュータ上で120量子3規則QAOAアルゴリズムをシミュレートできる。
論文 参考訳(メタデータ) (2020-10-28T13:26:41Z) - Efficient construction of tensor-network representations of many-body
Gaussian states [59.94347858883343]
本稿では,多体ガウス状態のテンソルネットワーク表現を効率よく,かつ制御可能な誤差で構築する手法を提案する。
これらの状態には、量子多体系の研究に欠かせないボゾン系およびフェルミオン系二次ハミルトン系の基底状態と熱状態が含まれる。
論文 参考訳(メタデータ) (2020-08-12T11:30:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。