論文の概要: A Parameterizable Convolution Accelerator for Embedded Deep Learning Applications
- arxiv url: http://arxiv.org/abs/2602.04044v1
- Date: Tue, 03 Feb 2026 22:24:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-05 19:45:11.293651
- Title: A Parameterizable Convolution Accelerator for Embedded Deep Learning Applications
- Title(参考訳): 組込みディープラーニングアプリケーションのためのパラメータ化可能な畳み込み加速器
- Authors: Panagiotis Mousouliotis, Georgios Keramidas,
- Abstract要約: リアルタイム組み込みディープラーニング(DL)アプリケーションは、レイテンシ、消費電力、面積、コストに関する複数の制約を課している。
本研究は,CNNアクセラレータを高レベル合成(HLS)ツールを用いて記述するハードウェア・ソフトウェア(HW/SW)協調設計手法を提案する。
- 参考スコア(独自算出の注目度): 2.4923006485141284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural network (CNN) accelerators implemented on Field-Programmable Gate Arrays (FPGAs) are typically designed with a primary focus on maximizing performance, often measured in giga-operations per second (GOPS). However, real-life embedded deep learning (DL) applications impose multiple constraints related to latency, power consumption, area, and cost. This work presents a hardware-software (HW/SW) co-design methodology in which a CNN accelerator is described using high-level synthesis (HLS) tools that ease the parameterization of the design, facilitating more effective optimizations across multiple design constraints. Our experimental results demonstrate that the proposed design methodology is able to outperform non-parameterized design approaches, and it can be easily extended to other types of DL applications.
- Abstract(参考訳): FPGA(Field-Programmable Gate Array)に実装された畳み込みニューラルネットワーク(CNN)アクセラレータは通常、パフォーマンスの最大化に主眼を置いて設計されている。
しかし、リアルタイム組み込みディープラーニング(DL)アプリケーションは、レイテンシ、消費電力、面積、コストに関する複数の制約を課している。
本研究は、ハードウェア・ソフトウェア(HW/SW)の共同設計手法で、CNNアクセラレータを高レベル合成(HLS)ツールを用いて記述し、設計のパラメータ化を容易にし、複数の設計制約をまたいだより効率的な最適化を容易にする。
実験の結果,提案手法は非パラメータ化設計手法よりも優れており,他のDLアプリケーションにも容易に拡張可能であることが示された。
関連論文リスト
- Implémentation Efficiente de Fonctions de Convolution sur FPGA à l'Aide de Blocs Paramétrables et d'Approximations Polynomiales [0.3966519779235704]
フィールドプログラマブルゲートアレイ(FPGA)に畳み込みニューラルネットワーク(CNN)を実装することが、GPUに代わる有望な選択肢として浮上している。
本稿では、FPGAの実装を最適化し、利用可能なリソースに適応するために設計された畳み込みブロックのライブラリを提案する。
また、FPGA資源利用を予測する数学的モデルを開発するための方法論的フレームワークを提案する。
論文 参考訳(メタデータ) (2025-10-03T15:58:20Z) - Deep Learning-based Techniques for Integrated Sensing and Communication Systems: State-of-the-Art, Challenges, and Opportunities [54.12860202362483]
本稿では,統合型センシング・通信(ISAC)システムにおける深層学習(DL-based)技術の最近の発展と研究を概観的にレビューする。
ISACは、車載ネットワークや産業用ロボティクスなど、多くの新興アプリケーションにおいて、センサーと通信機能の両方を必要とするため、6Gおよびネットワーク以上の重要なイネーブラーと見なされている。
従来の手法の代替として、DLベースの手法は計算複雑性を減らした効率的でほぼ最適のソリューションを提供する。
論文 参考訳(メタデータ) (2025-08-23T22:27:51Z) - MetaML-Pro: Cross-Stage Design Flow Automation for Efficient Deep Learning Acceleration [8.43012094714496]
本稿では、リソース制約のあるハードウェア上にディープニューラルネットワーク(DNN)をデプロイするための最適化戦略の体系化と自動化のための統一的なフレームワークを提案する。
提案手法は,2つの重要な問題に対処する: (i) カスタム最適化戦略のエンコードと (ii) クロスステージ最適化探索のエナリングである。
論文 参考訳(メタデータ) (2025-02-09T11:02:06Z) - DCP: Learning Accelerator Dataflow for Neural Network via Propagation [52.06154296196845]
この研究は、DNN層の最適なデータフローを人間の努力なしに数秒で自動的に見つけるために、Dataflow Code Propagation (DCP)と呼ばれる効率的なデータ中心のアプローチを提案する。
DCPは、様々な最適化目標を最小化するために、望ましい勾配方向に向けてデータフローコードを効率的に更新する神経予測器を学習する。
例えば、追加のトレーニングデータを使用しないDCPは、数千のサンプルを使用して完全な検索を行うGAMAメソッドを超越している。
論文 参考訳(メタデータ) (2024-10-09T05:16:44Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
エッジコンピューティングアプリケーション用に設計された低消費電力組み込みFPGAに基づく分散システムを提案する。
提案システムは,様々なニューラルネットワーク(NN)モデルを同時に実行し,パイプライン構造にグラフを配置し,NNグラフの最も計算集約的な層により大きなリソースを手動で割り当てる。
論文 参考訳(メタデータ) (2023-05-24T16:08:55Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - A Graph Deep Learning Framework for High-Level Synthesis Design Space
Exploration [11.154086943903696]
High-Level Synthesisは、アプリケーション固有の高速プロトタイピングのためのソリューションである。
本稿では,加速性能とハードウェアコストを共同で予測するグラフニューラルネットワークHLSを提案する。
提案手法は,一般的なシミュレータと同等の精度で予測できることを示す。
論文 参考訳(メタデータ) (2021-11-29T18:17:45Z) - A Construction Kit for Efficient Low Power Neural Network Accelerator
Designs [11.807678100385164]
この研究は、最近の研究で使用されているニューラルネットワークアクセラレータ最適化アプローチの調査を提供する。
建設キットとして最適化と定量的効果のリストを提示し、各ビルディングブロックの設計選択を個別に評価する。
論文 参考訳(メタデータ) (2021-06-24T07:53:56Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
超低遅延アプリケーションのためのニューラルネットワークのトレーニング中の分級と量子化の相互作用を研究します。
量子化アウェアプルーニングは,タスクのプルーニングや量子化のみよりも計算効率のよいモデルであることが判明した。
論文 参考訳(メタデータ) (2021-02-22T19:00:05Z) - Scalable Deep-Learning-Accelerated Topology Optimization for Additively
Manufactured Materials [4.221095652322005]
トポロジー最適化(TO)は、新しい構造、材料、デバイスを設計するための、人気があり強力な計算手法である。
これらの課題に対処するため、SDL-TOと呼ばれる汎用拡張型ディープラーニング(DL)ベースのToフレームワークを提案する。
我々のフレームワークは、反復履歴データを学習し、与えられた設計と勾配のマッピングを同時にトレーニングすることで、TOを加速します。
論文 参考訳(メタデータ) (2020-11-28T17:38:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。