論文の概要: Stochastic hierarchical data-driven optimization: application to plasma-surface kinetics
- arxiv url: http://arxiv.org/abs/2602.04975v1
- Date: Wed, 04 Feb 2026 19:03:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-06 18:49:08.581682
- Title: Stochastic hierarchical data-driven optimization: application to plasma-surface kinetics
- Title(参考訳): 確率的階層型データ駆動最適化:プラズマ表面運動学への応用
- Authors: José Afonso, Vasco Guerra, Pedro Viegas,
- Abstract要約: この研究は、物理モデルの効率的な校正のために、スロッピーモデル理論にインスパイアされた階層的最適化フレームワークを導入する。
我々は、最小のシミュレーションクエリを用いて、厳密なパラメータ部分空間を特定し、ターゲットとするヘッセン近似を削減した。
プラズマ-表面相互作用問題に適用し,その枠組みを検証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work introduces a stochastic hierarchical optimization framework inspired by Sloppy Model theory for the efficient calibration of physical models. Central to this method is the use of a reduced Hessian approximation, which identifies and targets the stiff parameter subspace using minimal simulation queries. This strategy enables efficient navigation of highly anisotropic landscapes, avoiding the computational burden of exhaustive sampling. To ensure rigorous inference, we integrate this approach with a probabilistic formulation that derives a principled objective loss function directly from observed data. We validate the framework by applying it to the problem of plasma-surface interactions, where accurate modelling is strictly limited by uncertainties in surface reactivity parameters and the computational cost of kinetic simulations. Comparative analysis demonstrates that our method consistently outperforms baseline optimization techniques in sample efficiency. This approach offers a general and scalable tool for optimizing models of complex reaction systems, ranging from plasma chemistry to biochemical networks.
- Abstract(参考訳): この研究は、物理モデルの効率的なキャリブレーションのために、スロッピーモデル理論にインスパイアされた確率的階層的最適化フレームワークを導入する。
この手法の中心となるのは、最小のシミュレーションクエリを用いて厳密なパラメータ部分空間を識別し、ターゲットとする、ヘッセン近似の削減である。
この戦略により、高度異方性景観の効率的なナビゲーションが可能となり、排他的サンプリングの計算負担を回避することができる。
厳密な推論を保証するため,本手法を観測データから直接目的損失関数を導出する確率的定式化と統合する。
プラズマ-表面相互作用問題に適用し, 表面反応性パラメータの不確かさや速度論的シミュレーションの計算コストによって, 正確なモデリングが厳密に制限される枠組みを検証した。
比較分析により,本手法は標本効率において,ベースライン最適化手法を一貫して上回っていることが示された。
このアプローチは、プラズマ化学から生化学ネットワークまで、複雑な反応系のモデルを最適化するための汎用的でスケーラブルなツールを提供する。
関連論文リスト
- Optimization-Free Diffusion Model -- A Perturbation Theory Approach [12.756355928431455]
拡散モデルは、生成モデリングの強力なフレームワークとして登場した。
最適化フリーとフォワードSDEフリーの両方の代替手法を提案する。
本研究では,高次元ボルツマン分布と実世界のデータセットに対する本手法の有効性を示す。
論文 参考訳(メタデータ) (2025-05-29T17:02:26Z) - KO: Kinetics-inspired Neural Optimizer with PDE Simulation Approaches [45.173398806932376]
本稿では、運動理論と偏微分方程式(PDE)シミュレーションにインスパイアされた新しい神経勾配であるKOを紹介する。
我々は、ネットワークパラメータの力学を、運動原理によって支配される粒子系の進化として再想像する。
この物理駆動のアプローチは、パラメータ凝縮の現象を緩和し、最適化中のパラメータの多様性を本質的に促進する。
論文 参考訳(メタデータ) (2025-05-20T18:00:01Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - Probabilistic Reduced-Dimensional Vector Autoregressive Modeling with
Oblique Projections [0.7614628596146602]
雑音データから低次元ダイナミクスを抽出する低次元ベクトル自己回帰モデルを提案する。
最適斜め分解は、予測誤差の共分散に関する最良の予測可能性のために導出される。
合成ロレンツシステムとイーストマンケミカルの工業プロセスのデータセットを用いて,提案手法の優れた性能と効率を実証した。
論文 参考訳(メタデータ) (2024-01-14T05:38:10Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
本稿では,DeepMixと呼ばれるハイパースペクトルデコンボリューション問題に対する新しい最適化フレームワークを提案する。
これは3つの異なるモジュール、すなわちデータ一貫性モジュール、手作りの正規化器の効果を強制するモジュール、および装飾モジュールで構成されている。
本研究は,他のモジュールの協調作業によって達成される進歩を維持するために設計された,文脈を考慮した認知型モジュールを提案する。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Sampling with Mollified Interaction Energy Descent [57.00583139477843]
モーフィファイド相互作用エネルギー降下(MIED)と呼ばれる新しい最適化に基づくサンプリング手法を提案する。
MIEDは、モル化相互作用エネルギー(MIE)と呼ばれる確率測度に関する新しいクラスのエネルギーを最小化する
我々は,制約のないサンプリング問題に対して,我々のアルゴリズムがSVGDのような既存の粒子ベースアルゴリズムと同等に動作することを示す。
論文 参考訳(メタデータ) (2022-10-24T16:54:18Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
動的モード分解は、動的データを研究するための非常に効率的な手法であることが証明された。
このアプローチの適用は、利用可能なデータが不完全である場合に問題となる。
本稿では,森-Zwanzig分解の1次近似を考察し,対応する最適化問題を記述し,勾配に基づく最適化法を用いて解く。
論文 参考訳(メタデータ) (2022-02-23T11:23:59Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
本研究では,異なるシミュレーション手法をハイブリダイズし,インタラクション・ピクチャー・シミュレーションの性能を向上させるフレームワークを提案する。
これらのハイブリッド化手法の物理的応用は、電気遮断において$log2 Lambda$としてゲート複雑性のスケーリングをもたらす。
力学的な制約を受けるハミルトニアンシミュレーションの一般的な問題に対して、これらの手法は、エネルギーコストを課すために使われるペナルティパラメータ$lambda$とは無関係に、クエリの複雑さをもたらす。
論文 参考訳(メタデータ) (2021-09-07T20:01:22Z) - Jointly Modeling and Clustering Tensors in High Dimensions [6.072664839782975]
テンソルの合同ベンチマークとクラスタリングの問題を考察する。
本稿では,統計的精度の高い近傍に幾何的に収束する効率的な高速最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-04-15T21:06:16Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。