論文の概要: Incremental Mapping with Measurement Synchronization & Compression
- arxiv url: http://arxiv.org/abs/2602.07901v1
- Date: Sun, 08 Feb 2026 10:43:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 20:26:24.861354
- Title: Incremental Mapping with Measurement Synchronization & Compression
- Title(参考訳): 計測同期・圧縮によるインクリメンタルマッピング
- Authors: Mark Griguletskii, Danil Belov, Pavel Osinenko,
- Abstract要約: この研究は、連結因子グラフを漸進的に構築する新しいアプローチを導入する。
外部評価基準に基づいて最適なグラフトポロジを選択することにより、利用可能なすべてのセンサデータの取り込みを保証する。
提案手法はグラフ圧縮を容易にし,ノード数(最適化変数)を平均30%削減する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern autonomous vehicles and robots utilize versatile sensors for localization and mapping. The fidelity of these maps is paramount, as an accurate environmental representation is a prerequisite for stable and precise localization. Factor graphs provide a powerful approach for sensor fusion, enabling the estimation of the maximum a posteriori solution. However, the discrete nature of graph-based representations, combined with asynchronous sensor measurements, complicates consistent state estimation. The design of an optimal factor graph topology remains an open challenge, especially in multi-sensor systems with asynchronous data. Conventional approaches rely on a rigid graph structure, which becomes inefficient with sensors of disparate rates. Although preintegration techniques can mitigate this for high-rate sensors, their applicability is limited. To address this problem, this work introduces a novel approach that incrementally constructs connected factor graphs, ensuring the incorporation of all available sensor data by choosing the optimal graph topology based on the external evaluation criteria. The proposed methodology facilitates graph compression, reducing the number of nodes (optimized variables) by ~30% on average while maintaining map quality at a level comparable to conventional approaches.
- Abstract(参考訳): 現代の自動運転車やロボットは、ローカライゼーションとマッピングに多用途センサーを使用している。
これらの写像の忠実度は、正確な環境表現が安定かつ正確な局所化の前提となるため、最重要である。
因子グラフは、センサー融合のための強力なアプローチを提供し、最大アフター解の推定を可能にする。
しかし、グラフに基づく表現の離散性は、非同期センサ測定と相まって、一貫した状態推定を複雑にする。
最適因子グラフトポロジの設計は、特に非同期データを持つマルチセンサーシステムにおいて、依然としてオープンな課題である。
従来のアプローチは厳密なグラフ構造に依存しており、これは異なる速度のセンサーで非効率になる。
プリインテグレーション技術は、これを高速度センサーに応用できるが、適用性は限られている。
この問題に対処するために、外部評価基準に基づいて最適なグラフトポロジを選択することにより、接続因子グラフを漸進的に構築し、すべてのセンサデータの取り込みを保証する新しいアプローチを導入する。
提案手法は,従来の手法に匹敵するレベルのマップ品質を維持しつつ,ノード数(最適化変数)を平均で30%削減し,グラフ圧縮を容易にする。
関連論文リスト
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Match and Locate: low-frequency monocular odometry based on deep feature
matching [0.65268245109828]
本稿では,1台のカメラしか必要としないロボットオドメトリーの新たなアプローチを提案する。
アプローチは、深い特徴マッチングモデルを用いて、ビデオストリームの連続フレーム間の画像特徴のマッチングに基づいている。
本研究では,AISG-SLAビジュアルローカライゼーションチャレンジにおける手法の性能評価を行い,計算効率が高く,実装が容易であるにもかかわらず,競合する結果が得られた。
論文 参考訳(メタデータ) (2023-11-16T17:32:58Z) - Vanishing Point Estimation in Uncalibrated Images with Prior Gravity
Direction [82.72686460985297]
我々はマンハッタンのフレームを推定する問題に取り組む。
2つの新しい2行解法が導出され、そのうちの1つは既存の解法に影響を与える特異点に悩まされない。
また、局所最適化の性能を高めるために、任意の行で実行される新しい最小でないメソッドを設計する。
論文 参考訳(メタデータ) (2023-08-21T13:03:25Z) - Efficient Sensor Placement from Regression with Sparse Gaussian Processes in Continuous and Discrete Spaces [3.729242965449096]
センサ配置問題は、相関現象を監視する際に発生する一般的な問題である。
本稿では,勾配降下法を用いて最適化可能な変分近似に基づくSP問題に対する新しい定式化を提案する。
論文 参考訳(メタデータ) (2023-02-28T19:10:12Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - GraphFit: Learning Multi-scale Graph-Convolutional Representation for
Point Cloud Normal Estimation [31.40738037512243]
本研究では,非構造3次元点雲の高精度かつ効率的な正規推定法を提案する。
我々は、より局所的な近傍幾何学を強調する正規推定のためのグラフ畳み込み特徴表現を学習する。
提案手法は,様々なベンチマークデータセットにおいて,最先端の精度で競合より優れる。
論文 参考訳(メタデータ) (2022-07-23T10:29:26Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
グラフの混合重みとノード間のデータ不均一性の関係に収束の依存性を特徴付ける。
グラフが現在の勾配を混合する能力を定量化する計量法を提案する。
そこで本研究では,パラメータを周期的かつ効率的に最適化する手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T15:54:35Z) - Learning a Probabilistic Strategy for Computational Imaging Sensor
Selection [16.553234762932938]
本稿では,センサ設計のための確率的センササンプリング戦略を学習する物理制約付き,完全微分可能なオートエンコーダを提案する。
提案手法は,センサ選択の相関関係を2次完全接続型Isingモデルとして特徴付ける,システムに好まれるサンプリング分布を学習する。
論文 参考訳(メタデータ) (2020-03-23T17:52:17Z) - Deep Soft Procrustes for Markerless Volumetric Sensor Alignment [81.13055566952221]
本研究では、より堅牢なマルチセンサ空間アライメントを実現するために、マーカーレスデータ駆動対応推定を改善する。
我々は、幾何学的制約を終末的に典型的なセグメンテーションベースモデルに組み込み、対象のポーズ推定タスクと中間密な分類タスクをブリッジする。
実験により,マーカーベースの手法で同様の結果が得られ,マーカーレス手法よりも優れ,またキャリブレーション構造のポーズ変動にも頑健であることがわかった。
論文 参考訳(メタデータ) (2020-03-23T10:51:32Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。