論文の概要: Belief Offloading in Human-AI Interaction
- arxiv url: http://arxiv.org/abs/2602.08754v1
- Date: Mon, 09 Feb 2026 14:56:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 20:26:25.31119
- Title: Belief Offloading in Human-AI Interaction
- Title(参考訳): 人間とAIの相互作用における信念のオフロード
- Authors: Rose E. Guingrich, Dvija Mehta, Umang Bhatt,
- Abstract要約: 本稿では,人間とAIのインタラクションにおける認知的オフロードの種類,すなわち「オフロード」を定義し,検討する。
我々は、信念をオフロードする記述的な分類法とその規範的含意を提供する。
我々は,人間とAIの相互作用における信念のオフロードの可能性と結果を評価するために,今後の研究の方向性に近づいた。
- 参考スコア(独自算出の注目度): 5.536593942538004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: What happens when people's beliefs are derived from information provided by an LLM? People's use of LLM chatbots as thought partners can contribute to cognitive offloading, which can have adverse effects on cognitive skills in cases of over-reliance. This paper defines and investigates a particular kind of cognitive offloading in human-AI interaction, "belief offloading," in which people's processes of forming and upholding beliefs are offloaded onto an AI system with downstream consequences on their behavior and the nature of their system of beliefs. Drawing on philosophy, psychology, and computer science research, we clarify the boundary conditions under which belief offloading occurs and provide a descriptive taxonomy of belief offloading and its normative implications. We close with directions for future work to assess the potential for and consequences of belief offloading in human-AI interaction.
- Abstract(参考訳): LLMが提供する情報から人々の信念が導かれるとどうなるのか?
思考パートナーとしてのLLMチャットボットの使用は、認知的オフロードに寄与し、過度な信頼の場合に認知スキルに悪影響を及ぼす可能性がある。
本稿では、人間とAIの相互作用における特定の認知的オフロード、つまり、信念の形成と維持の過程が、彼らの行動と信念のシステムの性質にダウンストリームの結果をもたらすAIシステムにオフロードされる「ビリーフ・オフロード」を定義し、研究する。
哲学,心理学,計算機科学の研究に基づいて,信念のオフロードが発生する境界条件を明らかにし,信念のオフロードに関する記述的分類と規範的含意を提供する。
我々は,人間とAIの相互作用における信念のオフロードの可能性と結果を評価するために,今後の研究の方向性に近づいた。
関連論文リスト
- Think Socially via Cognitive Reasoning [94.60442643943696]
本稿では,人間の社会的認知をモデルとした認知推論について紹介する。
CogFlowは、この機能をLLMに組み込む完全なフレームワークである。
論文 参考訳(メタデータ) (2025-09-26T16:27:29Z) - Bridging Minds and Machines: Toward an Integration of AI and Cognitive Science [48.38628297686686]
認知科学は人工知能(AI)、哲学、心理学、神経科学、言語学、文化などの分野を深く形成している。
AIの多くのブレークスルーは、そのルーツを認知理論にさかのぼる一方で、AI自体が認知研究を進めるのに欠かせないツールになっている。
我々は、認知科学におけるAIの未来は、性能の向上だけでなく、人間の心の理解を深めるシステムの構築にも関係していると主張している。
論文 参考訳(メタデータ) (2025-08-28T11:26:17Z) - Measurement of LLM's Philosophies of Human Nature [113.47929131143766]
大規模言語モデル(LLM)を対象とする標準化された心理尺度を設計する。
現在のLSMは、人間に対する信頼の欠如を示す。
本稿では,LLMが継続的に価値体系を最適化できるメンタルループ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-03T06:22:19Z) - FairMindSim: Alignment of Behavior, Emotion, and Belief in Humans and LLM Agents Amid Ethical Dilemmas [23.26678104324838]
FairMindSimを導入し、不公平なシナリオを通じて道徳的ジレンマをシミュレートした。
我々はLLMエージェントを用いて人間の行動をシミュレートし,様々な段階のアライメントを確保した。
以上の結果から,GPT-4oは社会的正義の感覚が強く,人間はより豊かな感情を呈することが明らかとなった。
論文 参考訳(メタデータ) (2024-10-14T11:39:05Z) - Learning mental states estimation through self-observation: a developmental synergy between intentions and beliefs representations in a deep-learning model of Theory of Mind [0.35154948148425685]
心の理論(りょうがく、英: Theory of Mind、ToM)とは、信念、意図、精神状態などを他人に関連付ける能力である。
我々は,低レベル精神状態を予測する学習と,高レベル精神状態に寄与する学習との間に発達的な相乗効果を示す。
我々は,人間の社会的認知発達の理解に,我々の計算的アプローチが役立つことを示唆する。
論文 参考訳(メタデータ) (2024-07-25T13:15:25Z) - Robot Learning Theory of Mind through Self-Observation: Exploiting the
Intentions-Beliefs Synergy [0.0]
心の理論(みんがく、英: Theory of Mind、TOM)は、他のエージェントの信念、意図、精神状態に起因する能力である。
我々は,意図や目標などの低レベル精神状態を予測する学習と,信念などの高レベル精神状態に寄与する学習の相乗効果を示す。
我々は,今後の適応型社会ロボットの設計に,我々のアーキテクチャ的アプローチが関係することを提案する。
論文 参考訳(メタデータ) (2022-10-17T21:12:39Z) - Diagnosing AI Explanation Methods with Folk Concepts of Behavior [70.10183435379162]
我々は「成功」は、その説明がどんな情報を含むかだけでなく、人間の説明者がどのような情報から理解するかにも依存すると考えている。
我々は、人間の説明による社会的帰属の枠組みとして、行動の民意的概念を用いる。
論文 参考訳(メタデータ) (2022-01-27T00:19:41Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Joint Inference of States, Robot Knowledge, and Human (False-)Beliefs [90.20235972293801]
本稿では,人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)の認知能力が,ロボットとの相互作用にどのように影響するかを理解するために,対象状態,ロボット知識,人間(時間的)の認知能力の表現にグラフィカルモデルを採用することを提案する。
推論アルゴリズムは、複数のビューにまたがる全てのロボットから個別のpgを融合し、単一のビューから発生したエラーを克服するより効果的な推論能力を得る。
論文 参考訳(メタデータ) (2020-04-25T23:02:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。