論文の概要: From Prompt-Response to Goal-Directed Systems: The Evolution of Agentic AI Software Architecture
- arxiv url: http://arxiv.org/abs/2602.10479v1
- Date: Wed, 11 Feb 2026 03:34:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-12 21:44:01.427557
- Title: From Prompt-Response to Goal-Directed Systems: The Evolution of Agentic AI Software Architecture
- Title(参考訳): Prompt-Responseからゴール指向システム:エージェントAIソフトウェアアーキテクチャの進化
- Authors: Mamdouh Alenezi,
- Abstract要約: Agentic AIは、ステートレスでプロンプト駆動型生成モデルからゴール指向システムへのアーキテクチャ移行を表す。
本稿では、知的エージェント理論と現代のLCM中心のアプローチを結びつけることによって、この遷移を考察する。
この研究は、標準化されたエージェントループ、登録、監査可能な制御機構への収束を特定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Agentic AI denotes an architectural transition from stateless, prompt-driven generative models toward goal-directed systems capable of autonomous perception, planning, action, and adaptation through iterative control loops. This paper examines this transition by connecting foundational intelligent agent theories, including reactive, deliberative, and Belief-Desire-Intention models, with contemporary LLM-centric approaches such as tool invocation, memory-augmented reasoning, and multi-agent coordination. The paper presents three primary contributions: (i) a reference architecture for production-grade LLM agents that separates cognitive reasoning from execution using typed tool interfaces; (ii) a taxonomy of multi-agent topologies, together with their associated failure modes and mitigation approaches; and (iii) an enterprise hardening checklist that incorporates governance, observability, and reproducibility considerations. Through an analysis of emerging industry platforms, including Kore.ai, Salesforce Agentforce, TrueFoundry, ZenML, and LangChain, the study identifies a convergence toward standardized agent loops, registries, and auditable control mechanisms. It is argued that the subsequent phase of agentic AI development will parallel the maturation of web services, relying on shared protocols, typed contracts, and layered governance structures to support scalable and composable autonomy. The persistent challenges related to verifiability, interoperability, and safe autonomy remain key areas for future research and practical deployment.
- Abstract(参考訳): Agentic AIは、自律的な認識、計画、行動、反復的な制御ループによる適応が可能な目標指向システムへの、ステートレスでプロンプト駆動の生成モデルからのアーキテクチャ移行を表す。
本稿では, ツール実行, メモリ拡張推論, マルチエージェント協調といった, 現代のLCM中心のアプローチと, 反応的, 熟考的, 信念意図的モデルを含む基礎的知的エージェント理論を結びつけることによって, この遷移を考察する。
主な貢献は3つある。
i) 型付けツールインタフェースを用いた認知的推論と実行を分離する実運用レベルのLCMエージェントの参照アーキテクチャ
(二 マルチエージェントトポロジの分類法及び関連する障害モード及び緩和アプローチ
三 ガバナンス、可観測性及び再現性を考慮した企業強硬チェックリスト
Kore.ai、Salesforce Agentforce、TrueFoundry、ZenML、LangChainといった新興産業プラットフォームの分析を通じて、この研究は標準化されたエージェントループ、レジストリ、監査可能なコントロールメカニズムへの収束を特定する。
エージェントAI開発のその後のフェーズは、スケーラブルで構成可能な自律性をサポートするために、共有プロトコル、型付きコントラクト、階層化されたガバナンス構造に依存して、Webサービスの成熟と並行して行われる、と論じられている。
検証可能性、相互運用性、安全な自律性に関連する永続的な課題は、将来の研究と実践的な展開にとって重要な領域である。
関連論文リスト
- Agentic Reasoning for Large Language Models [122.81018455095999]
推論は推論、問題解決、意思決定の基礎となる基本的な認知プロセスである。
大規模言語モデル(LLM)は、クローズドワールド設定では強力な推論能力を示すが、オープンエンドおよび動的環境では苦労する。
エージェント推論は、連続的な相互作用を計画し、行動し、学習する自律的なエージェントとしてLLMを解釈することでパラダイムシフトを示す。
論文 参考訳(メタデータ) (2026-01-18T18:58:23Z) - The Path Ahead for Agentic AI: Challenges and Opportunities [4.52683540940001]
この章では、複雑な環境で自律的に動作するエージェントAIシステムの出現について考察する。
我々は、統計モデルからトランスフォーマーベースのシステムへのアーキテクチャの進歩を辿り、エージェントの振る舞いを可能にする能力を識別する。
既存の調査とは異なり、私たちは、言語理解から自律的な行動へのアーキテクチャの移行に注目し、デプロイ前に解決しなければならない技術的ギャップを強調します。
論文 参考訳(メタデータ) (2026-01-06T06:31:42Z) - Towards Responsible and Explainable AI Agents with Consensus-Driven Reasoning [4.226647687395254]
本稿では,多モデルコンセンサスと推論層ガバナンスに基づく実運用レベルのエージェントのためのResponsible(RAI)およびExplainable(XAI)AIエージェントアーキテクチャを提案する。
提案した設計では、異種LLMとVLMエージェントのコンソーシアムが独立して、共有入力コンテキストから候補出力を生成する。
専用の推論エージェントは、これらのアウトプットをまたいで構造化された統合を行い、安全と政策の制約を強制し、幻覚と偏見を緩和し、監査可能な証拠に基づく決定を生成する。
論文 参考訳(メタデータ) (2025-12-25T14:49:25Z) - Beyond Pipelines: A Survey of the Paradigm Shift toward Model-Native Agentic AI [27.209787026732972]
エージェントAIの急速な進化は、人工知能の新しいフェーズを象徴している。
この調査はエージェントAI構築におけるパラダイムシフトをトレースする。
それぞれの能力が外部スクリプトモジュールからエンドツーエンドの学習行動へとどのように進化したかを調べる。
論文 参考訳(メタデータ) (2025-10-19T05:23:43Z) - Agentic AI Frameworks: Architectures, Protocols, and Design Challenges [0.0]
人工知能では、人工知能エージェントが目標指向の自律性、文脈推論、動的マルチエージェント調整を示す。
本稿では,CrewAI,LangGraph,AutoGen,Semantic Kernel,Agno,Google ADK,MetaGPTなど,主要なエージェントAIフレームワークの体系的レビューと比較分析を行う。
この分野における重要な制限、新たなトレンド、オープンな課題を特定します。
論文 参考訳(メタデータ) (2025-08-13T19:16:18Z) - Agentic Web: Weaving the Next Web with AI Agents [109.13815627467514]
大規模言語モデル(LLM)を活用したAIエージェントの出現は、エージェントWebに対する重要な転換点である。
このパラダイムでは、エージェントが直接対話して、ユーザに代わって複雑なタスクを計画、コーディネート、実行します。
本稿では,エージェントWebの理解と構築のための構造化フレームワークを提案する。
論文 参考訳(メタデータ) (2025-07-28T17:58:12Z) - Deep Research Agents: A Systematic Examination And Roadmap [109.53237992384872]
Deep Research (DR) エージェントは複雑な多ターン情報研究タスクに取り組むように設計されている。
本稿では,DRエージェントを構成する基礎技術とアーキテクチャコンポーネントの詳細な分析を行う。
論文 参考訳(メタデータ) (2025-06-22T16:52:48Z) - AI Agents vs. Agentic AI: A Conceptual Taxonomy, Applications and Challenges [3.7414278978078204]
このレビューは、AIエージェントとエージェントAIを批判的に区別し、構造化された概念分類、アプリケーションマッピング、そして、異なる設計哲学と能力を明らかにするための機会と課題の分析を提供する。
論文 参考訳(メタデータ) (2025-05-15T16:21:33Z) - Internet of Agents: Fundamentals, Applications, and Challenges [68.9543153075464]
異種エージェント間のシームレスな相互接続、動的発見、協調的なオーケストレーションを可能にする基盤となるフレームワークとして、エージェントのインターネット(IoA)を紹介した。
我々は,機能通知と発見,適応通信プロトコル,動的タスクマッチング,コンセンサスとコンフリクト解決機構,インセンティブモデルなど,IoAの重要な運用イネーラを分析した。
論文 参考訳(メタデータ) (2025-05-12T02:04:37Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。